Journal of Meteorological Research

, Volume 32, Issue 6, pp 974–984

# Conjugate Gradient Algorithm in the Four-Dimensional Variational Data Assimilation System in GRAPES

• Yongzhu Liu
• Lin Zhang
• Zhihua Lian
Regular Article

## Abstract

Minimization algorithms are singular components in four-dimensional variational data assimilation (4DVar). In this paper, the convergence and application of the conjugate gradient algorithm (CGA), which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework, are investigated in the 4DVar minimization. First, the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied. The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization, while the orthogonalized Lanczos algorithm converges stably. Second, the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System (GRAPES). The CGA is 40% more computationally efficient than the quasi-Newton method, although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method. Thus, the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.

## Key words

numerical weather prediction Global/Regional Assimilation and Prediction System four-dimensional variation conjugate gradient algorithm Lanczos algorithm

## Preview

Unable to display preview. Download preview PDF.

## References

1. Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 607–633, doi: 10.1002/qj.2982.
2. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445–1461, doi: 10.1002/qj.2054.
3. Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, doi: 10.1002/qj.49712051912.
4. Courtier, P., E. Andersson, W. Heckley, et al., 1998: The ECMDECEMBERWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783–1807, doi: 10.1002/qj.49712455002.Google Scholar
5. Fisher, M., 1998: Minimization algorithms for variational data assimilation. Annual Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, Shinfield Park, Reading, 7–11 September 1998, ECMWF, 364–385.Google Scholar
6. Fletcher, R., and C. M. Reeves, 1964: Function minimization by conjugate gradients. The Computer Journal, 7, 149–154, doi: 10.1093/comjnl/7.2.149.
7. Golub, G. H., and C. F. Van Loan, 1996: Matrix computations. Mathematical Gazette, 47, 392–396.Google Scholar
8. Gürol, S., A. T. Weaver, A. M. Moore, et al., 2014: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Quart. J. Roy. Meteor. Soc., 140, 539–556, doi: 10.1002/qj.2150.
9. Han, J., and H. L. Pan, 2006: Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664–674, doi: 10.1175/MWR3090.1.
10. Isaksen, L., M. Bonavita, R. Buizza, et al., 2010: Ensemble of Data Assimilations at ECMWF. ECMWF Technical Memoranda No. 636, Shinfield Park, Reading, 1–48.Google Scholar
11. Janisková, M., J. N. Thépaut, and J. F. Geleyn, 1999: Simplified and regular physical parameterizations for incremental fourdimensional variational assimilation. Mon. Wea. Rev., 127, 26–45, doi: 10.1175/1520-0493(1999)127<0026:SARPPF> 2.0.CO;2.
12. Laroche, S., P. Gauthier, M. Tanguay, et al., 2007: Impact of the different components of 4DVAR on the global forecast system of the meteorological service of Canada. Mon. Wea. Rev., 135, 2355–2364, doi: 10.1175/MWR3408.1.
13. Liu, C. S., and Q. N. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data. Mon. Wea. Rev., 141, 2721–2739, doi: 10.1175/MWR-D-12-00130.1.Google Scholar
14. Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45, 503–528, doi: 10.1007/BF01589116.
15. Liu, Y. Z., L. Zhang, and Z. Y. Jin, 2017: The optimization of GRAPES global tangent linear model and adjoint model. J. Appl. Meteor. Sci., 28, 62–71, doi: 10.11898/1001-7313. 20170106. (in Chinese)Google Scholar
16. Lorenc, A. C., S. P. Ballard, R. S. Bell, et al., 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012, doi: 10.1002/qj.49712657002.Google Scholar
17. Lorenc, A. C., N. E. Bowler, A. M. Clayton, et al., 2015: Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212–229, doi: 10.1175/MWR-D-14-00195.1.
18. Nash, S. G., 1984: Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal., 21, 770–788, doi: 10.1137/0721052.
19. Navon, I. M., and D. M. Legler, 1987: Conjugate-gradient methods for large-scale minimization in meteorology. Mon. Wea. Rev., 115, 1479–1502, doi: 10.1175/1520-0493(1987)115 <1479:CGMFLS>2.0.CO;2.
20. Paige, C. C., 1970: Practical use of the symmetric Lanczos process with re-orthogonalization. BIT Numerical Mathematics, 10, 183–195, doi: 10.1007/BF01936866.
21. Paige, C. C., and M. A. Saunders, 1982: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43–71, doi: 10.1145/355984.355989.
22. Parlett, B. N., and D. S. Scott, 1979: The Lanczos algorithm with selective orthogonalization. Mathematics of Computation, 33, 217–238, doi: 10.1090/S0025-5718-1979-0514820-3.
23. Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215–3233, doi: 10.1256/qj.05.129.
24. Rabier, F., A. McNally, E. Andersson, et al., 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124, 1809–1829, doi: 10.1002/qj.49712455003.Google Scholar
25. Rabier, F., H. Järvinen, E. Klinker, et al., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170, doi: 10.1002/qj. 49712656415.Google Scholar
26. Rawlins, F., S. P. Ballard, K. Bovis, et al., 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347–362, doi: 10.1002/qj.32.
27. Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global middle range forecast system. J. Appl. Meteor. Sci., 28, 1–10, doi: 10.11898/1001-7313.20170101. (in Chinese)Google Scholar
28. Simon, H. D., 1984: The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42, 115–142, doi: 10.1090/S0025-5718-1984-0725988-X.
29. Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328, doi: 10.1002/qj.49711347812.Google Scholar
30. Thépaut, J. N., R. N. Hoffman, and P. Courtier, 1993: Interactions of dynamics and observations in a four-dimensional variational assimilation. Mon. Wea. Rev., 121, 3393–3414, doi: 10.1175/1520-0493(1993)121<3393:IODAOI>2.0.CO;2.
31. Tompkins, A. M., and M. Janisková, 2004: A cloud scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor., 130, 2495–2517, doi: 10.1256/qj.03.162.
32. Trémolet, Y., 2007: Incremental 4D-Var convergence study. Tellus A: Dynamic Meteorology and Oceanography, 59, 706–718, doi: 10.1111/j.1600-0870.2007.00271.x.
33. Xue, J. S., S. Y. Zhuang, G. F. Zhu, et al., 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53, 3446–3457, doi: 10.1007/s11434-008-0416-0.
34. Zhang, L., and Y. Z. Liu, 2017: The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J. Appl. Meteor. Sci., 28, 168–176, doi: 10.11898/1001-7313.20170204. (in Chinese)Google Scholar
35. Zou, X., I. M. Navon, M. Berger, et al., 1993: Numerical experience with limited-memory Quasi-Newton and Truncated Newton methods. SIAM J. Optim., 3, 582–608, doi: 10.1137/0803029.