Journal of Meteorological Research

, Volume 32, Issue 6, pp 974–984 | Cite as

Conjugate Gradient Algorithm in the Four-Dimensional Variational Data Assimilation System in GRAPES

  • Yongzhu LiuEmail author
  • Lin Zhang
  • Zhihua Lian
Regular Article


Minimization algorithms are singular components in four-dimensional variational data assimilation (4DVar). In this paper, the convergence and application of the conjugate gradient algorithm (CGA), which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework, are investigated in the 4DVar minimization. First, the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied. The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization, while the orthogonalized Lanczos algorithm converges stably. Second, the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System (GRAPES). The CGA is 40% more computationally efficient than the quasi-Newton method, although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method. Thus, the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.

Key words

numerical weather prediction Global/Regional Assimilation and Prediction System four-dimensional variation conjugate gradient algorithm Lanczos algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 607–633, doi: 10.1002/qj.2982.CrossRefGoogle Scholar
  2. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445–1461, doi: 10.1002/qj.2054.CrossRefGoogle Scholar
  3. Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, doi: 10.1002/qj.49712051912.CrossRefGoogle Scholar
  4. Courtier, P., E. Andersson, W. Heckley, et al., 1998: The ECMDECEMBERWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783–1807, doi: 10.1002/qj.49712455002.Google Scholar
  5. Fisher, M., 1998: Minimization algorithms for variational data assimilation. Annual Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, Shinfield Park, Reading, 7–11 September 1998, ECMWF, 364–385.Google Scholar
  6. Fletcher, R., and C. M. Reeves, 1964: Function minimization by conjugate gradients. The Computer Journal, 7, 149–154, doi: 10.1093/comjnl/7.2.149.CrossRefGoogle Scholar
  7. Golub, G. H., and C. F. Van Loan, 1996: Matrix computations. Mathematical Gazette, 47, 392–396.Google Scholar
  8. Gürol, S., A. T. Weaver, A. M. Moore, et al., 2014: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Quart. J. Roy. Meteor. Soc., 140, 539–556, doi: 10.1002/qj.2150.CrossRefGoogle Scholar
  9. Han, J., and H. L. Pan, 2006: Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664–674, doi: 10.1175/MWR3090.1.CrossRefGoogle Scholar
  10. Isaksen, L., M. Bonavita, R. Buizza, et al., 2010: Ensemble of Data Assimilations at ECMWF. ECMWF Technical Memoranda No. 636, Shinfield Park, Reading, 1–48.Google Scholar
  11. Janisková, M., J. N. Thépaut, and J. F. Geleyn, 1999: Simplified and regular physical parameterizations for incremental fourdimensional variational assimilation. Mon. Wea. Rev., 127, 26–45, doi: 10.1175/1520-0493(1999)127<0026:SARPPF> 2.0.CO;2.CrossRefGoogle Scholar
  12. Laroche, S., P. Gauthier, M. Tanguay, et al., 2007: Impact of the different components of 4DVAR on the global forecast system of the meteorological service of Canada. Mon. Wea. Rev., 135, 2355–2364, doi: 10.1175/MWR3408.1.CrossRefGoogle Scholar
  13. Liu, C. S., and Q. N. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data. Mon. Wea. Rev., 141, 2721–2739, doi: 10.1175/MWR-D-12-00130.1.Google Scholar
  14. Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45, 503–528, doi: 10.1007/BF01589116.CrossRefGoogle Scholar
  15. Liu, Y. Z., L. Zhang, and Z. Y. Jin, 2017: The optimization of GRAPES global tangent linear model and adjoint model. J. Appl. Meteor. Sci., 28, 62–71, doi: 10.11898/1001-7313. 20170106. (in Chinese)Google Scholar
  16. Lorenc, A. C., S. P. Ballard, R. S. Bell, et al., 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012, doi: 10.1002/qj.49712657002.Google Scholar
  17. Lorenc, A. C., N. E. Bowler, A. M. Clayton, et al., 2015: Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212–229, doi: 10.1175/MWR-D-14-00195.1.CrossRefGoogle Scholar
  18. Nash, S. G., 1984: Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal., 21, 770–788, doi: 10.1137/0721052.CrossRefGoogle Scholar
  19. Navon, I. M., and D. M. Legler, 1987: Conjugate-gradient methods for large-scale minimization in meteorology. Mon. Wea. Rev., 115, 1479–1502, doi: 10.1175/1520-0493(1987)115 <1479:CGMFLS>2.0.CO;2.CrossRefGoogle Scholar
  20. Paige, C. C., 1970: Practical use of the symmetric Lanczos process with re-orthogonalization. BIT Numerical Mathematics, 10, 183–195, doi: 10.1007/BF01936866.CrossRefGoogle Scholar
  21. Paige, C. C., and M. A. Saunders, 1982: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43–71, doi: 10.1145/355984.355989.CrossRefGoogle Scholar
  22. Parlett, B. N., and D. S. Scott, 1979: The Lanczos algorithm with selective orthogonalization. Mathematics of Computation, 33, 217–238, doi: 10.1090/S0025-5718-1979-0514820-3.CrossRefGoogle Scholar
  23. Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215–3233, doi: 10.1256/qj.05.129.CrossRefGoogle Scholar
  24. Rabier, F., A. McNally, E. Andersson, et al., 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124, 1809–1829, doi: 10.1002/qj.49712455003.Google Scholar
  25. Rabier, F., H. Järvinen, E. Klinker, et al., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170, doi: 10.1002/qj. 49712656415.Google Scholar
  26. Rawlins, F., S. P. Ballard, K. Bovis, et al., 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347–362, doi: 10.1002/qj.32.CrossRefGoogle Scholar
  27. Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global middle range forecast system. J. Appl. Meteor. Sci., 28, 1–10, doi: 10.11898/1001-7313.20170101. (in Chinese)Google Scholar
  28. Simon, H. D., 1984: The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42, 115–142, doi: 10.1090/S0025-5718-1984-0725988-X.CrossRefGoogle Scholar
  29. Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328, doi: 10.1002/qj.49711347812.Google Scholar
  30. Thépaut, J. N., R. N. Hoffman, and P. Courtier, 1993: Interactions of dynamics and observations in a four-dimensional variational assimilation. Mon. Wea. Rev., 121, 3393–3414, doi: 10.1175/1520-0493(1993)121<3393:IODAOI>2.0.CO;2.CrossRefGoogle Scholar
  31. Tompkins, A. M., and M. Janisková, 2004: A cloud scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor., 130, 2495–2517, doi: 10.1256/qj.03.162.CrossRefGoogle Scholar
  32. Trémolet, Y., 2007: Incremental 4D-Var convergence study. Tellus A: Dynamic Meteorology and Oceanography, 59, 706–718, doi: 10.1111/j.1600-0870.2007.00271.x.CrossRefGoogle Scholar
  33. Xue, J. S., S. Y. Zhuang, G. F. Zhu, et al., 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53, 3446–3457, doi: 10.1007/s11434-008-0416-0.CrossRefGoogle Scholar
  34. Zhang, L., and Y. Z. Liu, 2017: The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J. Appl. Meteor. Sci., 28, 168–176, doi: 10.11898/1001-7313.20170204. (in Chinese)Google Scholar
  35. Zou, X., I. M. Navon, M. Berger, et al., 1993: Numerical experience with limited-memory Quasi-Newton and Truncated Newton methods. SIAM J. Optim., 3, 582–608, doi: 10.1137/0803029.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Meteorological CenterBeijingChina

Personalised recommendations