Advertisement

Journal of Meteorological Research

, Volume 32, Issue 6, pp 950–973 | Cite as

Multiple Equilibria in a Land–Atmosphere Coupled System

  • Dongdong Li
  • Yongli He
  • Jianping Huang
  • Lu Bi
  • Lei Ding
Article
  • 22 Downloads

Abstract

Many low-order modeling studies indicate that there may be multiple equilibria in the atmosphere induced by thermal and topographic forcings. However, most work uses uncoupled atmospheric model and just focuses on the multiple equilibria with distinct wave amplitude, i.e., the high- and low-index equilibria. Here, a low-order coupled land–atmosphere model is used to study the multiple equilibria with both distinct wave phase and wave amplitude. The model combines a two-layer quasi-geostrophic channel model and an energy balance model. Highly truncated spectral expansions are used and the results show that there may be two stable equilibria with distinct wave phase relative to the topography: one (the other) has a lower layer streamfunction that is nearly in (out of) phase with the topography, i.e., the lower layer ridges (troughs) are over the mountains, called ridge-type (trough-type) equilibria. The wave phase of equilibrium state depends on the direction of lower layer zonal wind and horizontal scale of the topography. The multiple wave phase equilibria associated with ridge- and trough-types originate from the orographic instability of the Hadley circulation, which is a pitch-fork bifurcation. Compared with the uncoupled model, the land–atmosphere coupled system produces more stable atmospheric flow and more ridge-type equilibrium states, particularly, these effects are primarily attributed to the longwave radiation fluxes. The upper layer streamfunctions of both ridge- and trough-type equilibria are also characterized by either a high- or low-index flow pattern. However, the multiple wave phase equilibria associated with ridge- and trough-types are more prominent than multiple wave amplitude equilibria associated with high- and low-index types in this study.

Key words

multiple equilibria land–atmosphere coupling wave phase longwave radiation stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13351_2018_8012_MOESM1_ESM.pdf (920 kb)
Multiple Equilibria in a Land-Atmosphere Coupled System

References

  1. Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477–493, doi: 10.1175/1520-0469(1998) 055<0477:TBEOAO>2.0.CO;2.CrossRefGoogle Scholar
  2. Benzi, R., A. R. Hansen, and A. Sutera, 1984: On stochastic perturbation of simple blocking models. Quart. J. Roy. Meteor. Soc., 110, 393–409, doi: 10.1002/qj.49711046406.CrossRefGoogle Scholar
  3. Benzi, R., P. Malguzzi, A. Speranza, et al., 1986: The statistical properties of general atmospheric circulation: Observational evidence and a minimal theory of bimodality. Quart. J. Roy. Meteor. Soc., 112, 661–674, doi: 10.1002/qj.49711247306.CrossRefGoogle Scholar
  4. Cai, M., and M. Mak, 1987: On the multiplicity of equilibria of baroclinic waves. Tellus, 39A, 116–137, doi: 10.3402/tellusa. v39i2.11746.Google Scholar
  5. Cehelsky, P., and K. K. Tung, 1987: Theories of multiple equilibria and weather regimes—A critical reexamination. Part II: Baroclinic two-layer models. J. Atmos. Sci., 44, 3282–3303, doi: 10.1175/1520-0469(1987)044<3282:TOMEAW>2.0.CO; 2.Google Scholar
  6. Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 1205–1216, doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.CrossRefGoogle Scholar
  7. Charney, J. G., and D. M. Straus, 1980: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci., 37, 1157–1176, doi: 10.1175/1520-0469(1980)037 <1157:FDIMEA>2.0.CO;2.CrossRefGoogle Scholar
  8. Christensen, C. W., and A. Wiin-Nielsen, 1996: Blocking as a wave–wave interaction. Tellus A: Dyn. Meteor. Oceanogr., 48, 254–271, doi: 10.3402/tellusa.v48i2.12059.CrossRefGoogle Scholar
  9. Crommelin, D. T., J. D. Opsteegh, and F. Verhulst, 2004: A mechanism for atmospheric regime behavior. J. Atmos. Sci., 61, 1406–1419, doi: 10.1175/1520-0469(2004)061<1406:AMFARB> 2.0.CO;2.CrossRefGoogle Scholar
  10. De Cruz, L., J. Demaeyer, and S. Vannitsem, 2016: The modular arbitrary-order ocean–atmosphere model: MAOOAM v1.0. Geosci. Model Dev., 9, 2793–2808, doi: 10.5194/gmd-9-2793-2016.CrossRefGoogle Scholar
  11. De Swart, H. E., 1988: Low-order spectral models of the atmospheric circulation: A survey. Acta Appl. Math., 11, 49–96, doi: 10.1007/BF00047114.CrossRefGoogle Scholar
  12. Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 1567–1586, doi: 10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.CrossRefGoogle Scholar
  13. Egger, J., 1981: Stochastically driven large-scale circulations with multiple equilibria. J. Atmos. Sci., 38, 2606–2618, doi: 10.1175/1520-0469(1981)038<2606:SDLSCW>2.0.CO;2.CrossRefGoogle Scholar
  14. Faranda, D., G. Masato, N. Moloney, et al., 2016: The switching between zonal and blocked mid-latitude atmospheric circulation: A dynamical system perspective. Climate Dyn., 47, 1587–1599, doi: 10.1007/s00382-015-2921-6.CrossRefGoogle Scholar
  15. He, Y. L., J. P. Huang, and M. X. Ji, 2014: Impact of land–sea thermal contrast on interdecadal variation in circulation and blocking. Climate Dyn., 43, 3267–3279, doi: 10.1007/s00382-014-2103-y.CrossRefGoogle Scholar
  16. He, Y. L., J. P. Huang, D. D. Li, et al., 2018: Comparison of the effect of land–sea thermal contrast on interdecadal variations in winter and summer blockings. Climate Dyn., 51, 1275–1294, doi: 10.1007/s00382-017-3954-9.CrossRefGoogle Scholar
  17. Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th Ed., Academic Press, Amsterdam, 552 pp.Google Scholar
  18. Huang, J. P., M. X. Ji, Y. K. Xie, et al., 2016: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 1131–1150, doi: 10.1007/s00382-015-2636-8.Google Scholar
  19. Huang, J. P., Y. K. Xie, X. D. Guan, et al., 2017a: The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dyn., 48, 429–446, doi: 10.1007/s00382-016-3085-8.CrossRefGoogle Scholar
  20. Huang, J., Y. Li, C. Fu, et al., 2017b: Dryland climate change: Recent progress and challenges. Rev. Geophys., 55, 719–778, doi: 10.1002/2016RG000550.CrossRefGoogle Scholar
  21. Koo, S., and M. Ghil, 2002: Successive bifurcations in a simple model of atmospheric zonal-flow vacillation. Chaos: An Interdiscip. J. Nonlinear Sci., 12, 300–309, doi: 10.1063/1.1468249.CrossRefGoogle Scholar
  22. Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42, 433–471, doi: 10.1175/1520-0469(1985)042<0433:PABAVI> 2.0.CO;2.CrossRefGoogle Scholar
  23. Li, J. P., and J. F. Chou, 1996: Source of atmospheric multiple equilibria. Chin. Sci. Bull., 41, 2074–2077.Google Scholar
  24. Li, J. P., and J. F. Chou, 1997: The effects of external forcing, dissipation and nonlinearity on the solutions of atmospheric equations. Acta Meteor. Sinica, 11, 57–65.Google Scholar
  25. Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi: 10.1029/2003GL017441.Google Scholar
  26. Li, J. P., and J. F. Chou, 2003: Advances in nonlinear atmospheric dynamics. Chinese J. Atmos. Sci., 27, 653–673, doi: 10.3878/j.issn.1006-9895.2003.04.15. (in Chinese)Google Scholar
  27. Li, M. C., and Z. X. Luo, 1983: Nonlinear mechanism of abrupt change of atmospheric circulation during June and October. Scientia Sinica (Series B), 26, 746–754.Google Scholar
  28. Li, S. L., and L. R. Ji, 2001: Persistent anomaly in Ural area in summer and its background circulation characteristics. Acta Meteor. Sinica, 59, 280–293, doi: 10.11676/qxxb2001.030. (in Chinese)Google Scholar
  29. Liu, C. J., and S. Y. Tao, 1983: Northward jumping of subtropical highs and cusp catastrophe. Scientia Sinica (Series B), 26, 1065–1074.Google Scholar
  30. Lindzen, R. S., 1986: Stationary planetary waves, blocking, and interannual variability. Adv. Geophys., 29, 251–273, doi: 10.1016/S0065-2687(08)60042-4.CrossRefGoogle Scholar
  31. Luo, Z. X., 1987: Abrupt change of flow pattern in baroclinic atmosphere forced by joint effects of diabatic heating and orography. Adv. Atmos. Sci., 4, 137–144, doi: 10.1007/BF02677060.CrossRefGoogle Scholar
  32. Miao, J. H., and M. F. Ding, 1985: Catastrophe theory of seasonal variation. Scientia Sinica (Series B), 28, 1079–1092.Google Scholar
  33. Molteni, F., 2003: Weather regimes and multiple equilibria. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, Academic, 2577–2586.Google Scholar
  34. Monin, A. S., 1986: An Introduction to the Theory of Climate. D. Reidel Publishing Company, Dordrecht, Holland, 261 pp.Google Scholar
  35. Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 7, 130–139, doi: 10.1175/1520-0469 (1950)007<0130:TICAIR>2.0.CO;2.Google Scholar
  36. Nigam, S., and E. DeWeaver, 2003: Stationary waves (orographic and thermally forced). Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, Academic, 2121–2137.CrossRefGoogle Scholar
  37. Pan, J., L. R. Ji, and C. Bueh, 2009: Intraseasonal climate characteristics of the summertime persistent anomalous circulation over Eurasian middle and high latitudes. Chinese J. Atmos. Sci., 33, 300–312, doi: 10.3878/j.issn.1006-9895.2009.02.09. (in Chinese)Google Scholar
  38. Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 1105–1145, doi: 10.1175/1520-0493(1982)110 <1105:DOWRQS>2.0.CO;2.CrossRefGoogle Scholar
  39. Reinhold, B. B., and R. T. Pierrehumbert, 1985: Corrections to “Dynamics of weather regimes: Quasi-stationary waves and blocking”. Mon. Wea. Rev., 113, 2055–2056, doi: 10.1175/1520-0493(1985)113<2055:>2.0.CO;2.CrossRefGoogle Scholar
  40. Ren, H. L., P. Q. Zhang, J. F. Chou, et al., 2006: Large-scale lowfrequency rainfall regimes and their transition modes in summertime over China. Chin. Sci. Bull., 51, 1355–1367, doi: 10.1007/s11434-006-1355-2.CrossRefGoogle Scholar
  41. Rossby, C. G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Marine Res., 2, 38–55, doi: 10.1357/002224039806649023.CrossRefGoogle Scholar
  42. Smith, R. B., 1979: The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230, doi: 10.1016/S0065-2687(08) 60262–9.CrossRefGoogle Scholar
  43. Sura, P., 2002: Noise-induced transitions in a barotropic β-plane channel. J. Atmos. Sci., 59, 97–110, doi: 10.1175/1520-0469(2002)059<0097:NITIAB>2.0.CO;2.CrossRefGoogle Scholar
  44. Sutera, A., 1986: Probability density distribution of large-scale atmospheric flow. Adv. Geophys., 29, 227–249, doi: 10.1016/S0065-2687(08)60041-2.CrossRefGoogle Scholar
  45. Tan, G. R., H. L. Ren, H. S. Chen, et al., 2017: Detecting primary precursors of January surface air temperature anomalies in China. J. Meteor. Res., 31, 1096–1108, doi: 10.1007/s13351-017-7013-6.CrossRefGoogle Scholar
  46. Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89, doi: 10.1126/science.1058958.CrossRefGoogle Scholar
  47. Tung, K. K., and A. J. Rosenthal, 1985: Theories of multiple equilibria— A critical reexamination. Part I: Barotropic models. J. Atmos. Sci., 42, 2804–2819, doi: 10.1175/1520-0469(1985)042 <2804:TOMEAC>2.0.CO;2.Google Scholar
  48. Vannitsem, S., J. Demaeyer, L. De Cruz, et al., 2015: Low-frequency variability and heat transport in a low-order nonlinear coupled ocean–atmosphere model. Physica D: Nonlinear Phenomena, 309, 71–85, doi: 10.1016/j.physd.2015.07.006.CrossRefGoogle Scholar
  49. Yoden, S., 1983: Nonlinear interactions in a two-layer, quasi-geostrophic, low-order model with topography. Part I: Zonal flow-forced wave interactions. J. Meteor. Soc. Japan, 61, 1–38, doi: 10.2151/jmsj1965.61.1_1.Google Scholar
  50. Zhu, Z. X., 1985: Equilibrium states of planetary waves forced by topography and perturbation heating and blocking situation. Adv. Atmos. Sci., 2, 359–367, doi: 10.1007/BF02677252.CrossRefGoogle Scholar
  51. Zhu, Z. X., and B. Z. Zhu, 1982: Equilibrium states of ultra-long waves driven by non-adiabatic heating and blocking situation. Scientia Sinica (Series B), 25, 1201–1212.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dongdong Li
    • 1
  • Yongli He
    • 1
  • Jianping Huang
    • 1
  • Lu Bi
    • 1
  • Lei Ding
    • 1
  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina

Personalised recommendations