Journal of Meteorological Research

, Volume 32, Issue 6, pp 1026–1040 | Cite as

Evaluation of the CAM and PX Surface Layer Parameterization Schemes for Momentum and Sensible Heat Fluxes Using Observations

  • Youshan Jiang
  • Dongqing Liu
  • Gang LiuEmail author
Regular Article


In this study, the performances of the Community Atmosphere Model (CAM) and Pleim–Xiu (PX) surface layer parameterization schemes are investigated by using field observations. The parameterization schemes are evaluated against continuous momentum and sensible heat flux observations measured at two flat and homogeneous grassland sites in the suburb of Nanjing, eastern China. The observations were conducted from 30 December 2014 to 18 April 2017 at Jiangxinzhou and from 9 February 2015 to 26 March 2018 at Jiangning. It is found that the momentum flux is overall in good agreement with the observation, and the sensible heat flux is overestimated. The parameterizations of the momentum and sensible heat fluxes well capture the diurnal and seasonal patterns seen in the observations at the two sites. At Jiangxinzhou, the PX parameterization underestimates the momentum flux throughout the day and the CAM parameterization slightly overestimates it around the noon, while they underestimate the momentum flux throughout the year. The two parameterizations overestimate the sensible heat flux in the daytime as well as over the entire year. At Jiangning, the two parameterizations overestimate the momentum flux throughout the day and the sensible heat flux in the daytime, and overestimate both of them over the entire year. The two parameterizations are not significantly different from each other in reproducing the turbulent fluxes at the same site, while they perform differently at the two sites in terms of statistics. In addition, the parameterized fluxes increase with increased roughness length.

Key words

evaluation parameterization turbulent fluxes surface layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors declare that there is no conflict of interest regarding the publication of this paper. The authors thank the anonymous reviewers for their constructive criticism and comments, which have greatly helped to improve the quality of this study.


  1. Anurose, T. J., and D. B. Subrahamanyam, 2014: Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions. Ann. Geophys., 32, 669–675, doi: 10.5194/angeo-32-669-2014.CrossRefGoogle Scholar
  2. Betts, A. K., F. Chen, K. E. Mitchell, et al., 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev., 125, 2896–2916, doi: 10.1175/1520-0493(1997)125<28 96:AOTLSA>2.0.CO;2.CrossRefGoogle Scholar
  3. Cassano, J. J., T. R. Parish, and J. C. King, 2001: Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon. Wea. Rev., 129, 26–46, doi: 10.1175/1520-0493(2001)129<0026:EOTSFP>2.0.CO;2.CrossRefGoogle Scholar
  4. Castelli, S. T., S. Falabino, L. Mortarini, et al., 2011: Investigation of surface-layer parameterizations on the basis of the UTP experimental campaign in Turin city. EMS Ann. Meet. Abstr., 8, EMS2011-180.Google Scholar
  5. Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta Model. Bound.-Layer Meteor., 85, 391–421, doi: 10.1023/A:1000531001463.CrossRefGoogle Scholar
  6. Chenge, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519–538, doi: 10.1007/s10546-004-1425-4.CrossRefGoogle Scholar
  7. Collins, W. D., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR/TN-464+STR, NCAR Tech. Rep., Boulder, Colorado, 214 pp.Google Scholar
  8. Freedman, F. R., and M. B. Ek, 2004: Testing NCEP operational surface layer parameterizations for stable conditions using CASES-99 data. 16th Symposium on Boundary Layers and Turbulence, Portland, Maine, USA, 9–13 August 2004, Amer. Meteor. Soc., 5 pp.Google Scholar
  9. Grachev, A. A., E. L. Andreas, C. W. Fairall, et al., 2007: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315–333, doi: 10.1007/s10 546-007-9177-6.CrossRefGoogle Scholar
  10. Grachev, A. A., E. L. Andreas, C. W. Fairall, et al., 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 51–82, doi: 10.1007/s10546-012-9771-0.CrossRefGoogle Scholar
  11. Hiller, R., M. J. Zeeman, and W. Eugster, 2008: Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Bound.-Layer Meteor., 127, 449–467, doi: 10.1007/s10546-008-9267-0.CrossRefGoogle Scholar
  12. Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteor., 42, 55–78, doi: 10.1007/BF00119875.CrossRefGoogle Scholar
  13. Holtslag, A. A. M., and H. A. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689–704, doi: 10.1175/1520-0450(1988)027 <0689:AMOTNS>2.0.CO;2.CrossRefGoogle Scholar
  14. Holtslag, A. A. M., E. I. F. De Bruijn, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575, doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.CrossRefGoogle Scholar
  15. Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637–662, doi: 10.1017/S00221120 90002129.CrossRefGoogle Scholar
  16. Katz, J., and P. Zhu, 2017: Evaluation of surface layer flux parameterizations using in-situ observations. Atmos. Res., 194, 150–163, doi: 10.1016/j.atmosres.2017.04.025.CrossRefGoogle Scholar
  17. Klipp, C., 2007: Wind direction dependence of atmospheric boundary layer turbulence parameters in the urban roughness sublayer. J. Appl. Meteor. Climatol., 46, 2086–2097, doi: 10.1175/2006JAMC1298.1.CrossRefGoogle Scholar
  18. Kljun, N., P. Calanca, M. W. Rotach, et al., 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503–523, doi: 10.1023/B:BOUN.0000030653.710 31.96.CrossRefGoogle Scholar
  19. Lee, S.-H., S.-W. Kim, W. M. Angevine, et al., 2010: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys. Discuss., 10, 25033–25080, doi: 10.5194/acpd-10-25033-2010.CrossRefGoogle Scholar
  20. Li, Y., Z. Gao, D. Li, et al., 2014: An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions. Geosci. Model Dev., 7, 515–529, doi: 10.5194/gmd-7-515-2014.CrossRefGoogle Scholar
  21. Liu, G., Y. G. Liu, and S. Endo, 2013: Evaluation of surface flux parameterizations with long-term ARM observations. Mon. Wea. Rev., 141, 773–797, doi: 10.1175/MWR-D-12-00095.1.CrossRefGoogle Scholar
  22. Liu, G., Y. G. Liu, and S. Endo, 2017: Corrigendum. Mon. Wea. Rev., 145, 405–409, doi: 10.1175/MWR-D-16-0005.1.CrossRefGoogle Scholar
  23. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz. Inst. Akad. Nauk SSSR, 24, 163–187.Google Scholar
  24. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861, doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.CrossRefGoogle Scholar
  25. Pleim, J. E., 2006: A simple, efficient solution of flux–profile relationships in the atmospheric surface layer. J. Appl. Meteor. Climatol., 45, 341–347, doi: 10.1175/JAM2339.1.CrossRefGoogle Scholar
  26. Pleim, J. E., and A. J. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 16–32, doi: 10.1175/1520-0450-34.1.16.CrossRefGoogle Scholar
  27. Pleim, J. E., and A. J. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 1811–1822, doi: 10.1175/1520-0450(2003)042<1811:DOA LSM>2.0.CO;2.Google Scholar
  28. Poulos, G. S., and S. P. Burns, 2003: An evaluation of bulk Ribased surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60, 2523–2537, doi: 10.1175/1520-0469(2003)060<2523:AEOBRS> 2.0.CO;2.CrossRefGoogle Scholar
  29. Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293–318, doi: 10.1007/BF007 13146.CrossRefGoogle Scholar
  30. Schuepp, P. H., M. Y. Leclerc, J. I. MacPherson, et al., 1990: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Layer Meteor., 50, 355–373, doi: 10.1007/BF00120530.Google Scholar
  31. Sharan, M., and P. Kumar, 2011: Estimation of upper bounds for the applicability of non-linear similarity functions for non-dimensional wind and temperature profiles in the surface layer in very stable conditions. Proc. Roy. Soc. A, 467, 473–494, doi: 10.1098/rspa.2010.0220.CrossRefGoogle Scholar
  32. Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR, Boulder, Colorado, USA, NCAR Technical Note.Google Scholar
  33. Sodemann, H., and T. Foken, 2003: Evaluation of a parameterisation for turbulent fluxes of momentum and heat in stably stratified surface layers. Geophys. Res. Abstr., 5, 05126.Google Scholar
  34. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, Netherlands.CrossRefGoogle Scholar
  35. Tassone, C., and M. Ek, 2015: Ameriflux data used for verification of surface layer parameterizations. Geophys. Res. Abstr., 17, EGU2015-6815.Google Scholar
  36. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  37. Wang, L. L., Z. Q. Gao, Z. T. Pan, et al., 2013: Evaluation of turbulent surface flux parameterizations over tall grass in a Beijing suburb. J. Hydrometeorol., 14, 1620–1635, doi: 10.11 75/JHM-D-12-0103.1.CrossRefGoogle Scholar
  38. Wiernga, J., 1993: Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteor., 63, 323–363, doi: 10.1007/BF00705357.CrossRefGoogle Scholar
  39. Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150, doi: 10.1023/A:1018966204465.CrossRefGoogle Scholar
  40. Wu, W., Y. G. Liu, and A. K. Betts, 2012: Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains. J. Geophys. Res. Atmos., 117, D12202, doi: 10.1029/2011JD016971.Google Scholar
  41. Xiu, A. J., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192–209, doi: 10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.Google Scholar
  42. Zeng, X. B., and R. E. Dickinson, 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11, 537–550, doi: 10.1175/1520-0442(1998)011<0537:EOSSOS> 2.0.CO;2.CrossRefGoogle Scholar
  43. Zilitinkevich, S. S., 1970: Dynamics of the Atmospheric Boundary Layer. Leningrad Gidrometeor, Leningrad, 291 pp.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Transportation Meteorology of China Meteorological AdministrationNanjingChina
  2. 2.School of Atmospheric SciencesNanjing UniversityNanjingChina
  3. 3.Nanjing Meteorological BureauNanjingChina

Personalised recommendations