Journal of Meteorological Research

, Volume 32, Issue 6, pp 1011–1025 | Cite as

Performance of WRF Large Eddy Simulations in Modeling the Convective Boundary Layer over the Taklimakan Desert, China

  • Hongxiong Xu
  • Minzhong WangEmail author
  • Yinjun Wang
  • Wenyue Cai
Regular Article


The maximum height of the convective boundary layer (CBL) over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather. We combined the Weather Research and Forecasting Large Eddy Simulation (WRF-LES) with data from Global Positioning System (GPS) radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert. The model reproduced the evolution of the CBL processes reasonably well, but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection. Further simulations were performed with multiple configurations and sensitivity tests. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile. However, increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude (< 3 km) in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.

Key words

Weather Research and Forecasting Model (WRF) Large Eddy Simulation (LES) convective boundary layer (CBL) the Taklimakan Desert 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks the reviewers and editors for their professional advice in improving this paper.


  1. Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587–604, doi: 10.1175/1520-0493(2001)129 <0587:CAALSH>2.0.CO;2.Google Scholar
  2. Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493(2001) 129<0569:CAALSH>2.0.CO;2.Google Scholar
  3. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  4. Engelstaedter, S., R. Washington, C. Flamant, et al., 2015: The Saharan heat low and moisture transport pathways in the central Sahara—Multiaircraft observations and Africa-LAM evaluation. J. Geophys. Res. Atmos., 120, 4417–4442, doi: 10.1002/2015JD023123.CrossRefGoogle Scholar
  5. Garcia-Carreras, L., D. J. Parker, J. H. Marsham, et al., 2015: The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci., 72, 693–713, doi: 10.1175/JAS-D-13-0384.1.CrossRefGoogle Scholar
  6. Han, B., S. H. Lyu, and Y. H. Ao, 2012: Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177–192, doi: 10.1007/s00376-011-0207-4.CrossRefGoogle Scholar
  7. Heinold, B., P. Knippertz, and J. H. Marsham, 2013: Large eddy simulations of nocturnal low-level jets over desert regions and implications for dust emission. EGU General Assembly 2013 Vienna, Austria, 7–12 April, EGU.Google Scholar
  8. Heinold, B., P. Knippertz, and R. J. Beare, 2015: Idealized largeeddy simulations of nocturnal low-level jets over subtropical desert regions and implications for dust-generating winds. Quart. J. Roy. Meteor. Soc., 141, 1740–1752, doi: 10.1002/qj.2475.CrossRefGoogle Scholar
  9. Heinze, R., D. Mironov, and S. Raasch, 2015: Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study. J. Adv. Model Earth Syst., 7, 510–536, doi: 10.1002/2014MS000376.CrossRefGoogle Scholar
  10. Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, doi: 10.1175/1520-0493(1996)124<2322: NBLVDI>2.0.CO;2.CrossRefGoogle Scholar
  11. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia–Pacific J. Atmos. Sci., 42, 129–151.Google Scholar
  12. Hu, X.-M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831–1844, doi: 10.1175/2010JAMC2432.1.CrossRefGoogle Scholar
  13. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Emanuel, K. A., and D. J. Raymond, Eds., American Meteorological Society, Boston, MA, 165–170, doi: 10.1007/978-1-935704-13-3_16.Google Scholar
  14. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  15. LeMone, M. A., M. Tewari, F. Chen, et al., 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 30–54, doi: 10.1175/MWR-D-12-00106.1.CrossRefGoogle Scholar
  16. Liu, Y. B., T. Warner, Y. W. Liu, et al., 2011: Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerod., 99, 308–319, doi: 10.1016/j.jweia.2011.01.013.CrossRefGoogle Scholar
  17. Liu, Y. Q., Q. He, H. S. Zhang, et al., 2012: Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme. Adv. Atmos. Sci., 29, 381–390, doi: 10.1007/s00376-011-1068-6.CrossRefGoogle Scholar
  18. Marsham, J. H., P. Knippertz, N. S. Dixon, et al., 2011: The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett., 38, L16803, doi: 10.1029/2011GL048368.CrossRefGoogle Scholar
  19. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  20. Moeng, C. H., J. Dudhia, J. Klemp, et al., 2007: Examining twoway grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 2295–2311, doi: 10.1175/MWR3406.1.CrossRefGoogle Scholar
  21. National Centers for Environmental Prediction, National Weather Service, NOAA, et al., 2015: NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory doi: 10.5065/D65D8PWK.Google Scholar
  22. Rai, R. K., L. K. Berg, B. Kosović, et al., 2017: Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Bound.-Layer Meteor., 163, 69–89, doi: 10.1007/s10546-016-0217-y.CrossRefGoogle Scholar
  23. Schicker, I., D. Arnold Arias, and P. Seibert, 2016: Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteor. Atmos. Phys., 128, 279–301, doi: 10.1007/s00703-015-0416-y.CrossRefGoogle Scholar
  24. Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF Model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261–281, doi: 10.1007/s10546-010-9583-z.CrossRefGoogle Scholar
  25. Shin, H. H., and S. Y. Hong, 2015: Representation of the subgridscale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250–271, doi: 10.1175/MWR-D-14-00116.1.CrossRefGoogle Scholar
  26. Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, doi: 10.5065/D68S4MVH.Google Scholar
  27. Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884, doi: 10.1175/1520-0493(1997)125< 1870:PODSMC>2.0.CO;2.CrossRefGoogle Scholar
  28. Smirnova, T. G., J. M. Brown, S. G. Benjamin, et al., 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res. Atmos., 105, 4077–4086, doi: 10.1029/1999JD901047.CrossRefGoogle Scholar
  29. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, Dordrecht, Boston, 89.CrossRefGoogle Scholar
  30. Sun, J. N., and Q. J. Xu, 2009: Parameterization of sheared convective entrainment in the first-order jump model: Evaluation through large-eddy simulation. Bound.-Layer Meteor., 132, 279–288, doi: 10.1007/s10546-009-9394-2.CrossRefGoogle Scholar
  31. Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeorol., 13, 1421–1441, doi: 10.1175/JHMD-11-048.1.CrossRefGoogle Scholar
  32. ter Maat, H. W., E. J. Moors, R. W. A. Hutjes, et al., 2013: Exploring the impact of land cover and topography on rainfall maxima in the Netherlands. J. Hydrometeorol., 14, 524–542, doi: 10.1175/JHM-D-12-036.1.CrossRefGoogle Scholar
  33. Wang, M. Z., W. S. Wei, Q. He, et al., 2016a: Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert, China. J. Arid Land, 8, 846–860, doi: 10.1007/s40333-016-0054-3.CrossRefGoogle Scholar
  34. Wang, M. Z., H. Lu, H. Ming, et al., 2016b: Vertical structure of summer clear-sky atmospheric boundary layer over the hinterland and southern margin of Taklamakan Desert. Meteor. Appl., 23, 438–447, doi: 10.1002/met.1568.CrossRefGoogle Scholar
  35. Zhang, F. M., Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145, 2343–2361, doi: 10.1175/MWRD-16-0421.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongxiong Xu
    • 1
  • Minzhong Wang
    • 1
    • 2
    • 4
    Email author
  • Yinjun Wang
    • 1
  • Wenyue Cai
    • 1
    • 3
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
  3. 3.National Climate CenterChina Meteorological AdministrationBeijingChina
  4. 4.Taklimakan Desert Atmospheric Environment Observation Experimental StationTazhongChina

Personalised recommendations