Advertisement

Journal of Meteorological Research

, Volume 32, Issue 6, pp 881–895 | Cite as

Arctic Climate Changes Based on Historical Simulations (1900‒2013) with the CAMS-CSM

  • Ting WeiEmail author
  • Jian Li
  • Xinyao Rong
  • Wenjie Dong
  • Bingyi Wu
  • Minghu Ding
Special Collection on CAMS-CSM
  • 279 Downloads

Abstract

The Chinese Academy of Meteorological Sciences Climate System Model (CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical simulations (1900‒2013), we evaluate the model performance in simulating the observed characteristics of the Arctic climate system, which includes air temperature, precipitation, the Arctic Oscillation (AO), ocean temperature/salinity, the Atlantic meridional overturning circulation (AMOC), snow cover, and sea ice. The model‒data comparisons indicate that the CAMS-CSM reproduces spatial patterns of climatological mean air temperature over the Arctic (60°‒90°N) and a rapid warming trend from 1979 to 2013. However, the warming trend is overestimated south of the Arctic Circle, implying a subdued Arctic amplification. The distribution of climatological precipitation in the Arctic is broadly captured in the model, whereas it shows limited skills in depicting the overall increasing trend. The AO can be reproduced by the CAMS-CSM in terms of reasonable patterns and variability. Regarding the ocean simulation, the model underestimates the AMOC and zonally averaged ocean temperatures and salinity above a depth of 500 m, and it fails to reproduce the observed increasing trend in the upper ocean heat content in the Arctic. The large-scale distribution of the snow cover extent (SCE) in the Northern Hemisphere and the overall decreasing trend in the spring SCE are captured by the CAMS-CSM, while the biased magnitudes exist. Due to the underestimation of the AMOC and the poor quantification of air–sea interaction, the CAMS-CSM overestimates regional sea ice and underestimates the observed decreasing trend in Arctic sea–ice area in September. Overall, the CAMS-CSM reproduces a climatological distribution of the Arctic climate system and general trends from 1979 to 2013 compared with the observations, but it shows limited skills in modeling local trends and interannual variability.

Key words

temperature precipitation Arctic Oscillation Atlantic meridional overturning circulation ocean potential temperature salinity snow cover sea ice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Jingzhi Su, Yanli Tang, and Qing Yan for very helpful discussions. We thank the anonymous reviewers and the editor for their constructive comments, which significantly improved this paper.

References

  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP> 2.0.CO;2.CrossRefGoogle Scholar
  2. Barthélemy, A., T. Fichefet, H. Goosse, et al., 2015: Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations. Ocean Modelling, 86, 141–152, doi: 10.1016/j.ocemod.2014. 12.009.CrossRefGoogle Scholar
  3. Bojariu, R., and L. Gimeno, 2003: The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett., 30, 1156, doi: 10.1029/2002GL015651.CrossRefGoogle Scholar
  4. Boyer, T. P., J. I. Antonov, O. K. Baranova, et al., 2009: World Ocean Database 2009. Levitus, S., Eds., NOAA Atlas NESDIS 66, U.S. Gov. Printing Office, Wash., D.C., 219 pp.Google Scholar
  5. Cao, J., B. Wang, B. Q. Xiang, et al., 2015: Major modes of shortterm climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32, 585–600, doi: 10.1007/s00376-014-4200-6.CrossRefGoogle Scholar
  6. Cohen, J., J. A. Screen, J. C. Furtado, et al., 2014: Recent arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi: 10.1038/ngeo2234.CrossRefGoogle Scholar
  7. Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 3575–3592, doi: 10.1175/2011JCLI3863.1.CrossRefGoogle Scholar
  8. Cunningham, S. A., T. Kanzow, D. Rayner, et al., 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935–938, doi: 10.1126/science.114 1304.CrossRefGoogle Scholar
  9. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi: 10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  10. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAinterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  11. Delworth, T. L., A. Rosati, W. Anderson, et al., 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 2755–2781, doi: 10.1175/JCLI-D-11-00316.1.CrossRefGoogle Scholar
  12. Deser, C., R. Tomas, M. Alexander, et al., 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333–351, doi: 10.1175/2009JCLI3053.1.CrossRefGoogle Scholar
  13. Dickson, R. R., J. Meincke, S. A. Malmberg, et al., 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103–151, doi: 10.1016/0079-6611(88)90049-3.CrossRefGoogle Scholar
  14. Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958, doi: 10.5194/gmd-9-1937-2016.CrossRefGoogle Scholar
  15. Fichefet, T., and M. A. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12609–12646, doi: 10.1029/97JC00480.CrossRefGoogle Scholar
  16. Flato, G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F. et al., Eds., Cambridge University Press, Cambridge, 741–882.Google Scholar
  17. Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5. Princeton, NOAA/Geophysical Fluid Dynamics Laboratory, 342 pp.Google Scholar
  18. Guo, D. L., and H. J. Wang, 2017: Simulated historical (1901–2010) changes in the permafrost extent and active layer thickness in the Northern Hemisphere. J. Geophys. Res. Atmos., 122, 12285–12295, doi: 10.1002/2017JD027691.CrossRefGoogle Scholar
  19. Hartmann, D. L., A. M. G. Klein Tank, M. Rusticucci, et al., 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F. et al., Eds., Cambridge University Press, Cambridge, 96 pp.Google Scholar
  20. Holland, M. M., C. M. Bitz, M. Eby, et al., 2001: The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate, 14, 656–675, doi: 10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2.CrossRefGoogle Scholar
  21. Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867, doi: 10.1175/1520-0485(1997)027<1849:AEVPMF> 2.0.CO;2.CrossRefGoogle Scholar
  22. Levitus, S., J. I. Antonov, T. P. Boyer, et al., 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi: 10.1029/2012GL051106.CrossRefGoogle Scholar
  23. Light, B., T. C. Grenfell, and D. K. Perovich, 2008: Transmission and absorption of solar radiation by Arctic sea ice during the melt season. J. Geophys. Res., 113, C03023, doi: 10.1029/2006JC003977.CrossRefGoogle Scholar
  24. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, et al., 2013: World Ocean Atlas 2013, Volume 1: Temperature, Levitus, S., Ed., NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184 pp.Google Scholar
  25. Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562, doi: 10.1175/JPO3130.1.CrossRefGoogle Scholar
  26. Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 3–15, doi: 10.1175/1520-0469 (1975)032<0003:TEODTC>2.0.CO;2.CrossRefGoogle Scholar
  27. Massonnet, F., T. Fichefet, H. Goosse, et al., 2011: On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere, 5, 687–699, doi: 10.5194/tc-5-687-2011.CrossRefGoogle Scholar
  28. Melsom, A., V. S. Lien, and W. P. Budgell, 2009: Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn., 59, 969–981, doi: 10.1007/s10236-009-0222-5.CrossRefGoogle Scholar
  29. Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2016: Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Climatic Change, 136, 571–586, doi: 10.1007/s10584-016-1632-2.CrossRefGoogle Scholar
  30. Neelin, J. D., A. Bracco, H. Luo, et al., 2010: Considerations for parameter optimization and sensitivity in climate models. Proc. Nat. Acad. Sci. U.S.A., 107, 21349–21354, doi: 10.1073/pnas.1015473107.CrossRefGoogle Scholar
  31. Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol., 7, 937–952, doi: 10.1175/JHM538.1.CrossRefGoogle Scholar
  32. Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184, doi: 10.1038/ngeo2071.CrossRefGoogle Scholar
  33. Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221–227, doi: 10.1038/ngeo156.CrossRefGoogle Scholar
  34. Rampal, P., J. Weiss, and D. Marsan, 2009: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res., 114, C05013, doi: 10.1029/2008JC 005066.Google Scholar
  35. Rayner, N. A., D. E. Parker, E. B. Horton, et al, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  36. Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. NOAA National Centers for Environmental Information. doi: 10.7289/V5N01 4G9.Google Scholar
  37. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The atmospheric general circulation model ECHAM5. PART I: Model description, Report No. 349. Max Planck Institute for Meteorology, Hamburg, Germany, 1–140.Google Scholar
  38. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of the climatology and climate variability simulation. J. Meteor. Res., 32, 839–861, doi: 10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  39. Rougier, J., D. M. H. Sexton, J. M. Murphy, et al., 2009: Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Climate, 22, 3540–3557, doi: 10.1175/2008JCLI2533.1.CrossRefGoogle Scholar
  40. Rutter, N., R. Essery, J. Pomeroy, et al., 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res. Atmos., 114, D06111, doi: 10.1029/2008JD011063.CrossRefGoogle Scholar
  41. Schuur, E. A. G., A. D. McGuire, C. Schädel, et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171–179, doi: 10.1038/nature14338.CrossRefGoogle Scholar
  42. Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nature Climate Change, 4, 577–582, doi: 10.1038/nclimate2268.CrossRefGoogle Scholar
  43. Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 1334–1337, doi: 10.1038/nature09051.CrossRefGoogle Scholar
  44. Steele, M., J. L. Zhang, and W. Ermold, 2010: Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J. Geophys. Res., 115, C11004, doi: 10.1029/2009JC005849.CrossRefGoogle Scholar
  45. Steinacher, M., F. Joos, T. L. Frölicher, et al., 2009: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6, 515–533, doi: 10.5194/bg-6-515-2009.CrossRefGoogle Scholar
  46. Talley, L. D., 2002: Salinity patterns in the ocean. Encyclopedia of Global Environmental Change, MacCracken, M. C., and J. S. Perry, Eds., Wiley & Sons Press, New York, 629–640.Google Scholar
  47. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  48. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98GL00950.CrossRefGoogle Scholar
  49. Turner, J. S., 2010: The melting of ice in the Arctic Ocean: The influence of double-diffusive transport of heat from below. J. Phys. Oceanogr., 40, 249–256, doi: 10.1175/2009JPO4279.1.CrossRefGoogle Scholar
  50. Vaughan, D. G., J. C. Comiso, I. Allison, et al., 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F. et al., Eds., Cambridge University Press, Cambridge.Google Scholar
  51. Wang, J., and M. Ikeda, 2000: Arctic oscillation and Arctic sea–ice oscillation. Geophys. Res. Lett., 27, 1287–1290, doi: 10.1029/1999GL002389.Google Scholar
  52. Wei, T., M. H. Ding, B. Y. Wu, et al., 2016: Variations in temperature-related extreme events (1975–2014) in Ny-Ålesund, Svalbard. Atmos. Sci. Lett., 17, 102–108, doi: 10.1002/asl. 632.CrossRefGoogle Scholar
  53. Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 27, L06602, doi: 10.1029/2010GL042372.Google Scholar
  54. Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Ocean. Technol., 17, 525–531, doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.CrossRefGoogle Scholar
  55. Wu, B. Y., J. Z. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 6841–6858, doi: 10.1175/JCLI-D-14-00274.1.CrossRefGoogle Scholar
  56. Xin, Y. F., B. Y. Wu, L. G. Bian, et al., 2012: Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model. Chin. Sci. Bull., 57, 4462–4471, doi: 10.1007/s11434-012-5361-2.CrossRefGoogle Scholar
  57. Yan, Q., H. J. Wang, O. M. Johannessen, et al., 2014: Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv. Atmos. Sci., 31, 8–16, doi: 10.1007/s00376-013-3002-6.CrossRefGoogle Scholar
  58. Yan, Q., T. Wei, R. L. Korty, et al., 2016: Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proc. Natl. Acad. Sci. U.S.A., 113, 12963–12967, doi: 10.1073/pnas.1608950113.CrossRefGoogle Scholar
  59. Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 479–490, doi: 10.1007/BF02658169.CrossRefGoogle Scholar
  60. Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455, doi: 10.1007/BF02915571.CrossRefGoogle Scholar
  61. Zhang, Y., and J. Li, 2016: Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Climate Dyn., 47, 2923–2934, doi: 10.1007/s00382-016-3005-y.CrossRefGoogle Scholar
  62. Zweng, M. M., J. R. Reagan, J. I. Antonov, et al., 2013: World Ocean Atlas 2013, Volume 2: Salinity, U.S. Gov. Printing Office, Washington, D.C., 184 pp.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ting Wei
    • 1
    Email author
  • Jian Li
    • 1
  • Xinyao Rong
    • 1
  • Wenjie Dong
    • 2
    • 3
    • 4
  • Bingyi Wu
    • 5
  • Minghu Ding
    • 1
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.School of Atmospheric SciencesSun Yat-Sen UniversityGuangzhouChina
  3. 3.Zhuhai Joint Innovative Center for Climate–Environment–Ecosystem, Future Earth Research InstituteBeijing Normal UniversityZhuhaiChina
  4. 4.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  5. 5.Institute of Atmospheric SciencesFudan UniversityShanghaiChina

Personalised recommendations