Journal of Meteorological Research

, Volume 32, Issue 3, pp 503–515 | Cite as

A Heavy Rainfall Event in Autumn over Beijing—Atmospheric Circulation Background and Hindcast Simulation Using WRF

  • Xiangrui Li
  • Ke FanEmail author
  • Entao Yu
Special Collection on Weather and Climate Under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations


Heavy rainfall events often occur in Beijing during summer but rarely in autumn. However, during 3–5 September 2015, an exceptionally heavy rainfall event occurred in Beijing. Based on the reanalysis data and the Weather Research and Forecasting (WRF) model simulations, the main contributing factors and the predictability of this heavy rainfall event were examined through comprehensive analyses of vorticity advection and water vapor transport/ budget. The results indicate that a “high-in-the-east–low-in-the-west” pattern of 500-hPa geopotential height over the Beijing area played an important role. The 850-hPa low-level jet (LLJ) provided a mechanism for rising motion and transported abundant water vapor into the Beijing area. Two-way nested hindcast experiments using WRF well reproduced the atmospheric circulation and LLJ. Quantitative analysis indicates that the WRF model with the rapid update cycle (RUC) land surface scheme and the single-moment 6-class (WSM6) microphysics scheme exhibited the best skill, and the model performance improved with a higher resolution. Further analysis indicates that the bias in the precipitation forecast was caused by the bias in water vapor transport.

Key words

heavy rainfall WRF model water vapor supply autumn Beijing area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Professor Hui Gao at the National Climate Center of the China Meteorological Administration and the anonymous reviewers for helpful comments.


  1. Benjamin S., G. A. Grell, J. M. Brown, et al., 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrainfollowing coordinate model. Mon. Wea. Rev., 132, 473–494, doi: 10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.CrossRefGoogle Scholar
  2. Chen Y., J. Sun, J. Xu, et al., 2012: Analysis of the extreme features of the 21 July 2012 torrential rain in Beijing. Part I: Observations and related thoughts. Meteor. Mon., 38, 1255–1266, doi: 10.7519/j.issn.1000-0526.2012.10.012. (in Chinese)Google Scholar
  3. Fan S. Y., Y. R. Guo, M. Chen,, et al., 2008: Application of WRF 3DVar to a high resolution model over the Beijing area. Plateau Meteor., 27, 1181–1188. (in Chinese)Google Scholar
  4. Hong S. Y., K. S. Lim., J. H. Kim, et al., 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  5. Jankov I., W. A. Gallus Jr., M. Segal, et al., 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 1048–1060, doi: 10.1175/WAF888.1.CrossRefGoogle Scholar
  6. Jiang X. M., H. L. Yuan, M. Xue, et al., 2014: Analysis of a heavy rainfall event over Beijing during 21–22 July 2012 based on high resolution model analyses and forecasts. J. Meteor. Res., 28, 199–212, doi: 10.1007/s13351-014-3139-y.CrossRefGoogle Scholar
  7. Jin J. M., and N. L. Miller, 2007: Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. J. Hydrometeor., 8, 245–258, doi: 10.1175/JHM565.1.CrossRefGoogle Scholar
  8. Jin M. S., Y. Li, and D. B. Su, 2015: Urban-induced mechanisms for an extreme rainfall event in Beijing China: A satellite perspective. Climate, 3, 193–209, doi: 10.3390/cli3010193.CrossRefGoogle Scholar
  9. Li L. T., and A. J. Dolman, 2016: A synoptic overview and moisture trajectory analysis of the “7.21” heavy rainfall event in Beijing. J. Meteor. Res., 30, 103–116, doi: 10.1007/s13351-016-5052-z.CrossRefGoogle Scholar
  10. Lin Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  11. Liu H. Z., W. G. Wang, M. X. Shao, et al., 2007: A case study of the influence of the western Pacific subtropical high on the torrential rainfall in Beijing area. Chinese J. Atmos. Sci., 31, 727–734, doi: 10.3878/j.issn.1006-9895.2007.04.17. (in Chinese)Google Scholar
  12. Noilan J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536–549, doi: 10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.CrossRefGoogle Scholar
  13. Skamarock W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN–475+STR, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA, 125 pp, doi: 10.5065/D68S4MVH.Google Scholar
  14. Sun J. H., S. X. Zhao, S. M. Fu, et al., 2013: Multi-scale characteristics of record heavy rainfall over Beijing area on July 21. 2012. Chinese J. Atmos. Sci., 37, 705–718, doi: 10.3878/j.issn.1006-9895.2013.12202. (in Chinese)Google Scholar
  15. Sun J. S., 2005: A study of the basic features and mechanism of boundary layer jet in Beijing area. Chinese J. Atmos. Sci., 29, 445–452, doi: 10.3878/j.issn.1006-9895.2005.03.12. (in Chinese)Google Scholar
  16. Sun J. S., L. Lei, B. Yu, et al., 2015: The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor. Sinica, 73, 609–623, doi: 10.11676/qxxb2015.044. (in Chinese)Google Scholar
  17. Tao Z. Y., and Y. G. Zheng, 2013: Forecasting issues of the extreme heavy rain in Beijing on 21 July 2012. Torrential Rain and Disasters, 32, 193–201, doi: 10.3969/j.issn.1004-9045.2013.03.001. (in Chinese)Google Scholar
  18. Tewari M., F. Chen, W. Wang, et al., 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conference on Weather Analysis and Forecasting/ 16th Conference on Numerical Weather Prediction, Seattle, WA, US, 2004, Amer. Meteor. Soc., 11–15.Google Scholar
  19. Thompson G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecast of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.CrossRefGoogle Scholar
  20. Wang H. J., E. T. Yu, and S. Yang, 2011: An exceptionally heavy snowfall in Northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteor. Atmos. Phys., 113, 11–25, doi: 10.1007/s00703-011-0147-7.CrossRefGoogle Scholar
  21. Wang J. L., R. H. Zhang, and Y. C. Wang, 2012: Characteristics of precipitation in Beijing and the precipitation representativeness of Beijing weather observatory. J. Appl. Meteor. Sci., 23, 265–273, doi: 10.3969/j.issn.1001-7313.2012.03.002. (in Chinese)Google Scholar
  22. Wang S. Z., E. T. Yu, and H. J. Wang, 2012: A simulation study of a heavy rainfall process over the Yangtze River valley using the two-way nesting approach. Adv. Atmos. Sci., 29, 731–743, doi: 10.1007/s00376-012-1176-y.CrossRefGoogle Scholar
  23. Wang X. M., X. G. Zhou, Z. Y. Tao, et al., 2013: Quasigeostrophic theory and its application based on baroclinic two-layer model. Acta Phys. Sinica, 62, 029201, doi: 10.7498/aps.62.029201. (in Chinese)Google Scholar
  24. Wen Y. R., L. Xue, Y. Li, et al., 2015: Interaction between Typhoon Vicente (1208) and the western Pacific subtropical high during the Beijing extreme rainfall of 21 July 2012. J. Meteor. Res., 29, 293–304, doi: 10.1007/s13351-015-4097-8.CrossRefGoogle Scholar
  25. Zhao S. X., J. H. Sun, and L. U. Rong, 2016: Analysis of “9.4”unusual rainfall in Beijing during autumn 2015. Atmos. Ocean. Sci. Lett., 9, 219–225, doi: 10.1080/16742834.2016.1162083.CrossRefGoogle Scholar
  26. Zhu K. F., and M. Xue, 2016: Evaluation of WRF-based convection-permitting multi-physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing. Adv. Atmos. Sci., 33, 1240–1258, doi: 10.1007/s00376-016-6202-z.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nansen–Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  4. 4.Joint Laboratory for Climate and Environmental Change at Chengdu University of Information TechnologyChengduChina

Personalised recommendations