Journal of Meteorological Research

, Volume 32, Issue 3, pp 410–420 | Cite as

Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China

  • Lianyi Guo
  • Zhihong JiangEmail author
  • Weilin Chen
Regular Articles


The homogeneous hidden Markov model (HMM), a statistical pattern recognition method, is introduced in this paper. Based on the HMM, a 53-yr record of daily precipitation during the flood season (April–September) at 389 stations in East China during 1961–2013 is classified into six patterns: the South China (SC) pattern, the southern Yangtze River (SY) pattern, the Yangtze–Huai River (YH) pattern, the North China (NC) pattern, the overall wetter (OW) pattern, and the overall drier (OD) pattern. Features of the transition probability matrix of the first four patterns reveal that 1) the NC pattern is the most persistent, followed by the YH, and the SY is the least one; and 2) there exists a SY–SC–SY–YH–NC propagation process for the rain belt over East China during the flood season. The intraseasonal variability in the occurrence frequency of each pattern determines its start and end time. Furthermore, analysis of interdecadal variability in the occurrence frequency of each pattern in recent six decades has identified three obvious interdecadal variations for the SC, YH, and NC patterns in the mid–late 1970s, the early 1990s, and the late 1990s. After 2000, the patterns concentrated in the southern region play a dominant role, and thus there maintains a “flooding in the south and drought in the north” rainfall distribution in eastern China. In summary, the HMM provides a unique approach for us to obtain both spatial distribution and temporal variation features of flood-season rainfall.

Key words

hidden Markov model (HMM) rainfall patterns flood season rain belt propagation interdecadal variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We greatly thank the editor and anonymous reviewers for their constructive comments.

Supplementary material

13351_2018_7107_MOESM1_ESM.pdf (10 mb)
Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China


  1. Barnston A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126, doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.CrossRefGoogle Scholar
  2. Chen C., A. M. Greene, A. W. Robertson, et al., 2013: Scenario development for estimating potential climate change impacts on crop production in the North China Plain. Int. J. Climatol., 33, 3124–3140, doi: 10.1002/joc.3648.CrossRefGoogle Scholar
  3. Chen L. X., W. Li, P. Zhao, et al., 2000: On the process of summer monsoon onset over East Asia. Climatic Environ. Res., 5, 345–355, doi: 10.3969/j.issn.1006-9585.2000.04.002. (in Chinese)Google Scholar
  4. Chen Y. S., N. Shi, and H. B. Liu, 1995: A study of the diagnostic and prognostic method for distributive patterns of summer rainfall in eastern China. Quart. J. Appl. Meteor., 6, 327–332. (in Chinese)Google Scholar
  5. Dikbas F., M. Firat, A. C. Koc, et al., 2012: Classification of precipitation series using fuzzy cluster method. Int. J. Climatol., 32, 1596–1603, doi: 10.1002/joc.2350.CrossRefGoogle Scholar
  6. Ding Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396, doi: 10.2151/jmsj1965.70.1B_373.CrossRefGoogle Scholar
  7. Ding Y. H., and M. Katsuhito, 1994: Monsoons in East Asia. China Meteorological Press, Beijing, 74–92.Google Scholar
  8. Ding Y. H., and H. N. Ma, 1996: The Present Status and Future Research of the East Asian Monsoon. China Meteorological Press, 1–14.Google Scholar
  9. Fasullo J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 3200–3211, doi: 10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.CrossRefGoogle Scholar
  10. Gao H., W. Jiang, and W. J. Li, 2014: Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in eastern China. J. Meteor. Res., 28, 1075–1084, doi: 10.1007/s13351-014-4327-5.CrossRefGoogle Scholar
  11. Golian S., B. Saghafian, S. Sheshangosht, et al., 2010: Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran. Theor. Appl. Climatol., 102, 319–329, doi: 10.1007/s00704-010-0267-x.CrossRefGoogle Scholar
  12. Greene A. M., A. W. Robertson, and S. Kirshner, 2008: Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal timescales using a hidden Markov model. Quart. J. Roy. Meteor. Soc., 134, 875–887, doi: 10.1002/qj.254.CrossRefGoogle Scholar
  13. Greene A. M., A. W. Robertson, P. Smyth, et al., 2011: Downscaling projections of Indian monsoon rainfall using a nonhomogeneous hidden Markov model. Quart. J. Roy. Meteor. Soc., 137, 347–359, doi: 10.1002/qj.788.CrossRefGoogle Scholar
  14. Guo Q. Y., and J. Q. Wang, 1981: Interannual variations of rain spell during predominant summer monsoon over China for recent 30 years. Acta Geogr. Sinica., 36, 187–195, doi: 10.11821/xb198102007. (in Chinese)Google Scholar
  15. He J. H., and B. Q. Liu, 2016: The East Asian subtropical summer monsoon: Recent progress. J. Meteor. Res., 30, 135–155, doi: 10.1007/s13351-016-5222-z.CrossRefGoogle Scholar
  16. Hughes J. P., and P. Guttorp, 1994: A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res., 30, 1535–1546, doi: 10.1029/93WR02983.CrossRefGoogle Scholar
  17. Jiang Z. H., J. H. He, J. P. Li, et al., 2006: Northerly advancement characteristics of the East Asian summer monsoon with its interdecadal variations. Acta Geogr. Sinica., 61, 675–686, doi: 10.3321/j.issn:0375-5444.2006.07.001. (in Chinese)Google Scholar
  18. Kim B. J., R. H. Kripalani, J. H. Oh, et al., 2002: Summer mon-soon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol., 72, 65–74, doi: 10.1007/s007040200013.CrossRefGoogle Scholar
  19. Kirshner S., 2005: Modeling of multivariate time series using hidden Markov models. Ph. D. dissertation, University of California, Long Beach, CA, USA, 202 pp.Google Scholar
  20. Kulkarni, A, R. H. Kripalani, and S. V. Singh, 1992: Classification of summer monsoon rainfall patterns over India. Int. J. Climatol., 12, 269–280, doi: 10.1002/joc.3370120304.CrossRefGoogle Scholar
  21. Kwon M. H., J. G. Jhun, and K. J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi: 10.1029/2007GL031977.CrossRefGoogle Scholar
  22. Lau K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141–162, doi: 10.1007/s00376-997-0016-y.CrossRefGoogle Scholar
  23. Li A. H., and Z. H. Jiang, 2007: Interannual and interdecadal changes of summer rain band propagation over eastern China. J. Nanjing Inst. Meteor., 30, 186–193, doi: 10.3969/j.issn.1674-7097.2007.02.006. (in Chinese)Google Scholar
  24. Li C. Y., 2004: New research progress of the intraseasonal oscillation. Pro. Nat. Sci., 14, 734–741.Google Scholar
  25. Liao Q. S., G. Y. Chen, and G. Z. Chen, 1981: Westerlies Circulation in Northern Hemisphere and Summer Precipitation in China. China Meteorological Press, Beijing, 103–114.Google Scholar
  26. Lyu J. M., C. W. Zhu, J. H. Ju, et al., 2014: Interdecadal variability in summer precipitation over East China during the past 100 years and its possible causes. Chinese J. Atmos. Sci., 38, 782–794, doi: 10.3878/j.issn.1006-9895.1401.13227. (in Chinese)Google Scholar
  27. Mares C., I. Mares, H. Huebener, et al., 2014: A hidden Markov model applied to the daily spring precipitation over the Danube basin. Adv. Meteor., doi: 10.1155/2014/237247.Google Scholar
  28. Pineda L. E., and P. Willems, 2016: Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific-Andean river basins in Ecuador and Peru using a nonhomogeneous hidden Markov model. J. Hydrometeor., 17, 481–198, doi: 10.1175/JHM-D-15-0040.1.CrossRefGoogle Scholar
  29. Ramos M. C., 2001: Divisive and hierarchical clustering techniques to analyze variability of rainfall distribution patterns in a Mediterranean region. Atmos. Res., 57, 123–138, doi: 10.1016/S0169-8095(01)00065-5.CrossRefGoogle Scholar
  30. Ren Y. J., L. C. Song, Z. Y. Wang, et al., 2017: A possible abrupt change in summer precipitation over eastern China around 2009. J. Meteor. Res., 31, 397–408, doi: 10.1007/s13351-016-6021-2.CrossRefGoogle Scholar
  31. Robertson A. W., S. Kirshner, and P. Smyth, 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17, 4407–4424, doi: 10.1175/JCLI-3216.1.CrossRefGoogle Scholar
  32. Robertson A. W., S. Kirshner, P. Smyth, et al., 2006: Subseasonalto-interdecadal variability of the Australian monsoon over North Queensland. Quart. J. Roy. Meteor. Soc., 132, 519–542, doi: 10.1256/qj.05.75.CrossRefGoogle Scholar
  33. Soltani S., and R. Modarres, 2006: Classification of spatiotemporal pattern of rainfall in Iran using a hierarchical and divisive cluster analysis. J. Spat. Hydrol., 6, 1–12.Google Scholar
  34. Svensson C., 1999: Empirical orthogonal function analysis of daily rainfall in the upper reaches of the Huai river basin, China. Theor. Appl. Climatol., 62, 147–161, doi: 10.1007/s007040050080.CrossRefGoogle Scholar
  35. Tan W. L., F. Yusof, and Z. Yusop, 2013: Non-homogeneous hidden Markov model for daily rainfall amount in peninsular Malaysia. Jurnal Teknologi, 63, 75–80, doi: 10.11113/jt.v63.1916.CrossRefGoogle Scholar
  36. Tao S. Y., Y. J. Zhao, and X. M. Chen, 1958: Meiyu Rainfall in China. Meteorological Proceedings of Central Weather Bureau, Beijing, No. 4, 36 pp.Google Scholar
  37. Venkatanagendra K., and D. Maligelaussenaiah, 2017: Classification of rainfall data using linear Kernel based support vector machines. Int. J. Appl. Eng. Res., 12, 9717–9722. Available at Accessed on 20 May 2018.Google Scholar
  38. Wan R. J., and G. X. Wu, 2007: Mechanism of the spring persistent rains over southeastern China. Sci. China Ser. D Earth Sci., 50, 130–144, doi: 10.1007/s11430-007-2069-2.CrossRefGoogle Scholar
  39. Wang B., and H. Lin, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398, doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.CrossRefGoogle Scholar
  40. Wang S. W., J. L. Ye, D. Y. Gong, et al., 1998: Study on the patterns of summer rainfall in eastern China. Quart. J. Appl. Meteor., 9 (suppl), 65–74. (in Chinese)Google Scholar
  41. Wang S. W., J. N. Cai, J. H. Zhu, et al., 2002: The interdecadal variations of annual precipitation in China during the 1880s–1990s. Acta Meteor. Sinica, 60, 637–639, doi: 10.11676/qxxb2002.076. (in Chinese)Google Scholar
  42. Woolhiser D. A., and J. Roldán, 1982: Stochastic daily precipitation models: 2. A comparison of distributions of amounts. Water Resour. Res., 18, 1461–1468, doi: 10.1029/WR018i005p01461.CrossRefGoogle Scholar
  43. Xu L., Z. G. Zhao, Y. G. Wang, et al., 2000: A study of summer rainfall patterns in eastern China. Scientia Meteor. Sinica, 20, 270–276, doi: 10.3969/j.issn.1009-0827.2000.03.005. (in Chinese)Google Scholar
  44. Xu L., Z. G. Zhao, L. H. Sun, et al., 2005: Distinguishing wetter/drier rainfall patterns in China and analysis of associated characteristics of general circulation. J. Appl. Meteor. Sci., 16, 77–84, doi: 10.3969/j.issn.1001-7313.2005.z1.010. (in Chinese)Google Scholar
  45. Yao X. P., and Y. B. Yu, 2005: Activity of dry cold air and its impacts on Meiyu rain during the 2003 Meiyu period. Chinese J. Atmos. Sci., 29, 973–985, doi: 10.3878/j.issn.1006-9895.2005.06.13. (in Chinese)Google Scholar
  46. Yoo J. H., A. W. Robertson, and I. S. Kang, 2010: Analysis of intraseasonal and interannual variability of the Asian summer monsoon using a hidden Markov model. J. Climate, 23, 5498–5516, doi: 10.1175/2010JCLI3473.1.CrossRefGoogle Scholar
  47. Yu Y. X., S. G. Wang, Z. A. Qian, et al., 2013: Climatic linkages between SHWP position and EASM rainy belts and areas in East China in the summer half year. Plateau Meteor., 32, 1510–1525, doi: 10.7522/j.issn.1000-0534.2013.00033. (in Chinese)Google Scholar
  48. Zhang Q. Y., J. M. Lyu, L. M. Yang, et al., 2007: The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factors. Chinese J. Atmos. Sci., 31, 1290–1300, doi: 10.3878/j.issn.1006-9895.2007.06.23. (in Chinese)Google Scholar
  49. Zhang R., Z. J. Dong, J. Z. Min, et al., 2006: A mechanism analyses of East Asia monsoon and its rainfall influencing West Pacific subtropical high activity. J. Basic Sci. Eng., 14, 332–336. (in Chinese)Google Scholar
  50. Zhu C. W., X. J. Zhou, P. Zhao, et al., 2011: Onset of East Asian subtropical summer monsoon and rainy season in China. Sci. China Earth Sci., 54, 1845–1853, doi: 10.1007/s11430-011-4284-0.CrossRefGoogle Scholar
  51. Zhu Y. M., and X. Q. Yang, 2003: Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China. Acta Meteor. Sinica, 61, 641–654, doi: 10.3321/j.issn:0577-6619.2003.06.001. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations