Journal of Meteorological Research

, Volume 32, Issue 3, pp 444–455 | Cite as

An Algorithm for Automated Identification of Gust Fronts from Doppler Radar Data

  • Yue YuanEmail author
  • Ping Wang
  • Di Wang
  • Huizhen Jia
Regular Articles


Gust fronts are weak narrow-band echoes of increased reflectivity at the background levels in the low-elevation fields of Doppler radar. An automated approach to gust front detection that relies on the image features of radar observations is presented in this paper. The algorithm is not sensitive to the variations in reflectivity values and gust front widths. The approach includes the following steps. First, a novel local binary with dual-template (LBDT) algorithm is designed as the fundamental algorithm to identify the potential areas of narrow-band echoes. Second, based on the disadvantages of the LBDT algorithm, several modifications are made, including splitting the intersecting lines, connecting the fragments, and filtering the edges and radial interference noise. Third, an optical flow method is used to determine whether a weak narrow-band echo is a gust front according to the prior knowledge that a gust front usually propagates in front of the associated generating storm. The results of experiments show that the proposed method can automatically identify gust fronts with a high probability of detection and a low false alarm rate. The automatic identification of gust fronts is potentially useful for accurate short-term weather forecasting, particularly in the forecasting of storm winds.

Key words

gust fronts weak narrow-band echo automated identification local binary algorithm intersection optical flow method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Meteorological Observation Center of the China Meteorological Administration for providing the radar base data and Bai Li for providing assistance with this work.


  1. Abulikemu A., X. Xu, Y. Wang, et al., 2015: Atypical occlusion process caused by the merger of a sea-breeze front and gust front. Adv. Atmos. Sci., 32, 1431–1443, doi: 10.1007/s00376-015-4260-2.CrossRefGoogle Scholar
  2. Abulikemu A., X. Xu, Y. Wang, et al., 2016: A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front. Atmos. Res., 182, 10–19, doi: 10.1016/j.atmosres.2016.07.003.CrossRefGoogle Scholar
  3. Bedard, Jr. A. J., W. H. Hooke, and D. W. Beran, 1977: The Dulles airport pressure jump detector array for gust front detection. Bull. Amer. Meteor. Soc., 58, 920–926, doi: 1520-0477(1977)058<0920:TDAPJD>2.0.CO;2.CrossRefGoogle Scholar
  4. Cao C. Y., Y. Z. Chen, D. H. Liu, et al., 2015: The optical flow method and its application to nowcasting. Acta Meteor. Sinica, 73, 471–480, doi: 10.11676/qxxb2015.034. (in Chinese)Google Scholar
  5. Charba J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140–156, doi:10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.CrossRefGoogle Scholar
  6. Chen Y. Z., H. P. Lan, X. L. Chen, et al., 2017: A nowcasting technique based on application of the particle filter blending algorithm. J. Meteor. Res., 31, 931–945, doi: 10.1007/s13351-017-6557-9.CrossRefGoogle Scholar
  7. Delanoy R. L., and S. W. Troxel, 1993: Machine intelligent gust front detection. [Available online at edu/viewdoc/summary?doi= Scholar
  8. Farnebäck G., 2003: Two-frame motion estimation based on polynomial expansion. Proceedings of the 13th Scandinavian Conference, SCIA 2003, Springer, Halmstad, Sweden, 363–370, doi: 10.1007/3-540-45103-X_50.Google Scholar
  9. Lam L., S. W. Lee, and C. Y. Suen, 1992: Thinning methodologies—A comprehensive survey. IEEE Trans. Patt. Analy. Mach. Intell., 14, 869–885, doi: 10.1109/34.161346.CrossRefGoogle Scholar
  10. Li G. C., W. H. Guo, L. R. Wang, et al., 2006: Application of gust front to damage wind forecasting. Meteor. Mon., 32, 36–41, doi: 10.3969/j.issn.1000-0526.2006.08.006. (in Chinese)Google Scholar
  11. Liu L., Y. L. Long, P. W. Fieguth, et al., 2014: BRINT: Binary rotation invariant and noise tolerant texture classification. IEEE Trans. Image Process., 23, 3071–3084, doi: 10.1109/TIP.2014.2325777.CrossRefGoogle Scholar
  12. Ojala T., M. Pietikäinen, and D. Harwood, 1996: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit., 29, 51–59, doi: 10.1016/0031-3203(95)00067-4.CrossRefGoogle Scholar
  13. Qi L. B., C. H. Chen, and Q. J. Liu, 2006: Application of narrowband echo in severe weather prediction and analysis. Acta Meteor. Sinica, 64, 112–120, doi: 10.3321/j.issn:0577-6619.2006.01.011. (in Chinese)Google Scholar
  14. Quan W. Q., X. Xu, and Y. Wang, 2014: Observation of a straight-line wind case caused by a gust front and its associated fine-scale structures. J. Meteor. Res., 28, 1137–1154, doi: 10.1007/s13351-014-3080-0.CrossRefGoogle Scholar
  15. Spitzner M., and R. Gonzalez, 2015: Shape peeling for improved image skeleton stability. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brisbane, QLD, Australia, 1508–1512, doi: 10.1109/ICASSP.2015.7178222.CrossRefGoogle Scholar
  16. Smalley D. J., B. J. Bennett, and R. Frankel, 2005: 8.4 MIGFA: the machine intelligent gust front algorithm for NEXRAD. [Available online at doi=].Google Scholar
  17. Tao L., Z. H. Yuan, J. H. Dai, et al., 2014: Analysis of the characteristics of a nocturnal bow echo. Acta Meteor. Sinica, 72, 220–236, doi: 10.11676/qxxb2014.027. (in Chinese)Google Scholar
  18. Troxel S. W., and R. L. Delanoy, 1994: Machine intelligent approach to automated gust-front detection for Doppler weather radars. Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, SPIE, Orlando, FL, United States, 182–193, doi: 10.1117/12.179602.CrossRefGoogle Scholar
  19. Uyeda H., and D. S. Zrnić, 1986: Automatic detection of gust fronts. J. Atmos. Oceanic Technol., 3, 36–50, doi: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2.CrossRefGoogle Scholar
  20. Wakimoto R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082, doi: 10.1175/1520-0493(1982) 110<1060:TLCOTG>2.0.CO;2.CrossRefGoogle Scholar
  21. Wilson J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536, doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.CrossRefGoogle Scholar
  22. Wilson J. W., and C. K. Mueller, 1993: Nowcasts of thunder-storm initiation and evolution. Wea. Forecasting, 8, 113–131, doi: 10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.CrossRefGoogle Scholar
  23. Wilson J. W., E. E. Ebert, T. R. Saxen, et al., 2004: Sydney 2000 forecast demonstration project: Convective storm nowcasting. Wea. Forecasting, 19, 131–150, doi: 10.1175/1520-0434(2004)019<0131:SFDPCS>2.0.CO;2.CrossRefGoogle Scholar
  24. Wold S., K. Esbensen, and P. Geladi, 1987: Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52, doi: 10.1016/0169-7439(87)80084-9.CrossRefGoogle Scholar
  25. Xi B. Z., X. D. Yu, L. Sun, et al., 2015: Generating mechanism and type of gust front and its subjective identification methods. Meteor. Mon., 41, 133–142, doi: 10.7519/j.issn.1000-0526.2015.02.001. (in Chinese)Google Scholar
  26. Xu F., J. Yang, W. M. Xia, et al., 2015: Statistical characteristics and automatic detection of the gust front in radar reflectivity data. Plateau Meteor., 34, 586–595, doi: 10.7522/j.issn.1000-0534.2014.00005. (in Chinese)Google Scholar
  27. Xu F., J. Yang, H. H. Zheng, et al., 2016: Improvement of the MIGFA technique for identifying gust front and its verification. Meteor. Mon., 42, 44–53, doi: 10.7519/j.issn.1000-0526.2016.01.005. (in Chinese)Google Scholar
  28. Yu X. D., X. G. Zhou, and X. M. Wang, 2012: The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor. Sinica, 70, 311–337, doi: 10.11676/qxxb2012.030. (in Chinese)Google Scholar
  29. Zheng J. F., J. Zhang, K. Y. Zhu, et al., 2013: Automatic identification and alert of gust fronts. J. Appl. Meteor. Sci., 24, 117–125, doi: 10.3969/j.issn.1001-7313.2013.01.012. (in Chinese)Google Scholar
  30. Zheng J. F., J. Zhang, K. Y. Zhu, et al., 2014: Gust front statistical characteristics and automatic identification algorithm for CINRAD. J. Meteor. Res., 28, 607–623, doi: 10.1007/s13351-014-3240-2.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Bureau of MeteorologyTianjinChina

Personalised recommendations