Journal of Meteorological Research

, Volume 32, Issue 3, pp 394–409 | Cite as

Impact of 10–60-Day Low-Frequency Steering Flows on Straight Northward-Moving Typhoon Tracks over the Western North Pacific

  • Qiao Liu
  • Tim LiEmail author
  • Weican Zhou
Regular Articles


This study investigates the impact of low-frequency (intraseasonal and interannual) steering flows on straight northward-moving (defined as a meridional displacement two times greater than the zonal displacement) typhoons over the western North Pacific using observational data. The year-to-year change in the northward-moving tracks is affected by the interannual change in the location and intensity of the subtropical high. A strengthened northward steering flow east of 120°E and a weakened easterly steering flow south of the subtropical high favor more frequent straight northward tracks. Examining each of the individual northward-moving typhoons shows that they interact with three types of intraseasonal (10–60-day) background flows during their northward journey. The first type is the monsoon gyre pattern, in which the northward-moving typhoon is embedded in a closed cyclonic monsoon gyre circulation. The second type is the wave train pattern, where a cyclonic (anticyclonic) vorticity circulation is located to the west (east) of the northward-moving typhoon center. The third type is the mid-latitude trough pattern, in which the northward-moving typhoon center is located in the maximum vorticity region of the trough.

Key words

intraseasonal steering flow interannual steering flow straight northward-moving typhoon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We greatly appreciate the constructive comments from the anonymous reviewers and Dr. Mingyu Bi.


  1. Anthes R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. American Meteorological Society, Boston, 208 pp.CrossRefGoogle Scholar
  2. Bi M. Y., T. Li, M. Peng, et al., 2015: Interactions between typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702, doi: 10.1175/JAS-D-14-0269.1.CrossRefGoogle Scholar
  3. Brand S., C. A. Buenafe, and H. D. Hamilton, 1981: Comparison of tropical cyclone motion and environmental steering. Mon. Wea. Rev., 109, 908–909, doi: 10.1175/1520-0493(1981)109<0908:COTCMA>2.0.CO;2.CrossRefGoogle Scholar
  4. Cao X., T. Li, M. Peng, et al., 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 4639–4660, doi: 10.1175/JAS-D-13-0407.1.CrossRefGoogle Scholar
  5. Carr L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265–290, doi: 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.CrossRefGoogle Scholar
  6. Chan J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374, doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen L. S., and Z. Y. Meng, 2001: An overview on tropical cyclone research progress in China during the past 10 years. Chinese J. Atmos. Sci., 25, 420–432, doi: 10.3878/j.issn.1006-9895.2001.03.11. (in Chinese)Google Scholar
  8. Duchon C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  9. Fiorino M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975–990, doi: 10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.CrossRefGoogle Scholar
  10. Fovell R. G., Y. P. Bu, K. L. Corbosiero, et al, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Meteor. Monogr., 56, 11.1–11.27, doi: 10.1175/AMSMONOGRAPHS-D-15-0006.1.CrossRefGoogle Scholar
  11. Fu B., T. Li, M. S. Peng, et al, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780, doi: 10.1175/WAF1013.1.CrossRefGoogle Scholar
  12. Gao S. Y., T. T. Zhao, L. L. Song, et al., 2017: Study of northward moving tropical cyclones in 1949–2015. Meteor. Sci. Technol., 45, 313–323, doi: 10.19517/j.1671-6345.20160229. (in Chinese)Google Scholar
  13. Holland G. J., 1984: Tropical cyclone motion: A comparison of theory and observation. J. Atmos. Sci., 41, 68–75, doi: 10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2.CrossRefGoogle Scholar
  14. Hsu P. C., T. Li, and C. H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–941, doi: 10.1175/2010JCLI3833.1.Google Scholar
  15. Jiang X. A., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 4718–4748, doi: 10.1002/2014JD022375.Google Scholar
  16. Kasahara A., 1957: The numerical prediction of hurricane movement with the barotropic model. J. Atmos. Sci., 14, 386–402, doi:1 0.1175/15200469(1957)014<0386:TNPOHM>2.0.CO;2.Google Scholar
  17. Kasahara A., 1960: The numerical prediction of hurricane movement with a two-level baroclinic model. J. Atmos. Sci., 17, 357–370, doi: 10.1175/1520-0469(1960)017<0357:TNPOHM>2.0.CO;2.Google Scholar
  18. Kurihara Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045, doi: 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.CrossRefGoogle Scholar
  19. Lander M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640–654, doi: 10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.CrossRefGoogle Scholar
  20. Li C. Y., J. Pan, H. Tian, et al., 2012: Typhoon activities over the western north Pacific and atmospheric intraseasonal oscillation. Meteor. Mon., 38, 1–16, doi: 10.7519/j.issn.1000-0526.2012.1.001. (in Chinese)Google Scholar
  21. Li R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918, doi: 10.1175/JCLID-12-00210.1.CrossRefGoogle Scholar
  22. Li R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 2919–2930, doi: 10.1175/JCLID-12-00211.1.CrossRefGoogle Scholar
  23. Li T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? D. Z. Sun, and F. Bryan, Eds., American Geophysical Union, Washington DC, doi: 10.1029/2008GM000782.Google Scholar
  24. Li T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control. K. Oouchi, and H. Fudeyasu, Eds., Nova Science Publishers Inc., New York, NY, USA, 276 pp.Google Scholar
  25. Li T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.Google Scholar
  26. Li T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Ocean. Sci., 16, 285–314, doi: 10.3319/TAO.2005.16.2.285(A).CrossRefGoogle Scholar
  27. Li T. M., and Y. Zhu, 1991: Analysis and modelling of tropical cyclone motion (I)—The axiasymmetric structure and the sudden change of tracks. Sci. China (Ser. B), 34, 222–233, doi: 10.1360/yb1991-34-2-222.Google Scholar
  28. Liebmann B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412, doi: 10.2151/jmsj1965.72.3_401.CrossRefGoogle Scholar
  29. Maloney E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 2387–2403, doi: 10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.CrossRefGoogle Scholar
  30. Ren S. L., Y. M. Liu, and G. X. Wu, 2007: Interactions between typhoon and subtropical anticyclone over western Pacific revealed by numerical experiments. Acta Meteor. Sinica, 65, 329–340, doi: 10.11676/qxxb2007.032. (in Chinese)Google Scholar
  31. Tao L., S. J. Li, Y. Han, et al., 2012: Impact of intraseasonal oscillations of tropical atmosphere on TC track change over the western North Pacific. J. Trop. Meteor., 28, 698–706, doi: 10.3969/j.issn.1004-4965.2012.05.009. (in Chinese)Google Scholar
  32. Tian H., C. Y. Li, and H. Yang, 2010: Modulation of typhoon tracks over the western North Pacific by the intraseasonal oscillation. Chinese J. Atmos. Sci., 34, 559–579, doi: 10.3878/j.issn.1006-9895.2010.03.09. (in Chinese)Google Scholar
  33. Wang B., R. L. Elsberry, Y. Q. Wang, et al., 1998: Dynamics in tropical cyclone motion: A review. Chinese J. Atmos. Sci., 22, 535–547, doi: 10.3878/j.issn.1006-9895.1998.04.15. (in Chinese)Google Scholar
  34. Xu X. D., L. Xie, X. J. Zhang, et al., 2006: A mathematical model for forecasting tropical cyclone tracks. Nonlinear Anal. Real World Appl., 7, 211–224, doi: 10.1016/j.nonrwa.2004.04.004.CrossRefGoogle Scholar
  35. Xu Y. M., T. Li, and M. Peng, 2013: Tropical cyclogenesis in the western North Pacific as revealed by the 2008–09 YOTC data. Wea. Forecasting, 28, 1038–1056, doi: 10.1175/WAFD-12-00104.1.CrossRefGoogle Scholar
  36. Xu Y. M., T. Li, and M. Peng, 2014: Roles of the synoptic-scale wave train, the intraseasonal oscillation, and high-frequency eddies in the genesis of Typhoon Manyi (2001). J. Atmos. Sci., 71, 3706–3722, doi: 10.1175/JAS-D-13-0406.1.CrossRefGoogle Scholar
  37. Yamada H., T. Nasuno, W. Yanase, et al., 2016: Role of the vertical structure of a simulated tropical cyclone in its motion: A case study of Typhoon Fengshen (2008). SOLA, 12, 203–208, doi: 10.2151/sola.2016-041.CrossRefGoogle Scholar
  38. Yang L., Y. Du, D. X. Wang, et al., 2015: Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Climate Dyn., 44, 1505–1519, doi: 10.1007/s00382-014-2180-y.CrossRefGoogle Scholar
  39. Yoshida R., Y. Kajikawa, and H. Ishikawa, 2014: Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the western North Pacific. SOLA, 10, 15–18, doi: 10.2151/sola.2014-004.CrossRefGoogle Scholar
  40. Zhu Z. W., T. Li, P. C. Hsu, et al., 2015: A spatial-temporal projection model for extended-range forecast in the tropics. Climate Dyn., 45, 1085–1098, doi: 10.1007/s00382-014-2353-8.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations