Advertisement

Journal of Meteorological Research

, Volume 31, Issue 3, pp 597–611 | Cite as

Regional meteorological patterns for heavy pollution events in Beijing

Article

Abstract

The present study investigates meteorological conditions for the day-to-day changes of particulate matter (PM) concentration in Beijing city during the period 2008–2015. The local relationship of PM concentration to surface air temperature, pressure, wind speed, and relative humidity displays seasonal changes and year-to-year variations. The average correlation coefficient with PM10 in spring, summer, fall, and winter is 0.45, 0.40, 0.38, and 0.30 for air temperature; –0.45, –0.05, –0.40, and –0.45 for pressure; 0.13, 0.04, 0.53, and 0.50 for relative humidity; and –0.18, –0.11, –0.45, and –0.33 for wind speed. A higher correlation with wind speed is obtained when wind speed leads by half a day. The heavily polluted and clean days, which are defined as the top and bottom 10% of the PM values, show obvious differences in the regional distribution of air temperature, pressure, and wind. Polluted days correspond to higher air temperature in all the four seasons, lower sea level pressure and anomalous southerly winds to the south and east of Beijing in spring, fall, and winter, and a northwest–southeast contrast in the pressure anomaly and anomalous southerly winds in summer. Higher relative humidity is observed on polluted days in fall and winter. The polluted days are preceded by an anomalous cyclone moving from the northwest, accompanied by lower pressure and higher air temperature, in all four seasons. This feature indicates the impacts of moving weather systems on local meteorological conditions for day-to-day air quality changes in Beijing.

Keywords

PM10 Beijing local meteorology seasonal dependence weather system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors appreciate the comments of two anonymous reviewers, which have helped to improve this paper. The NCEP–DOE Reanalysis-2 data were obtained from ftp://ftp.cdc.noaa.gov/.

References

  1. Chen, J., C. S. Zhao, N. Ma, et al., 2012: A parameterization of low visibilities for hazy days in the North China Plain. Atmos. Chem. Phys., 12, 4935–4950, doi: 10.5194/acp-12-4935-2012.CrossRefGoogle Scholar
  2. Chen, Y., A. Ebenstein, M. Greenstone, et al., 2013: Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. U. S. A., 110, 12936–12941, doi: 10.1073/pnas.1300018110.CrossRefGoogle Scholar
  3. Chen, Z. H., S. Y. Cheng, J. B. Li, et al., 2008: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China. Atmos. Environ., 42, 6078–6087, doi: 10.1016/j.atmosenv.2008.03.043.CrossRefGoogle Scholar
  4. Cheng, Z., J. K. Jiang, O. Fajardo, et al., 2013: Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmos. Environ., 65, 186–194, doi: 10.1016/j.atmosenv.2012.10.022.CrossRefGoogle Scholar
  5. Choi, Y. S., C. H. Ho, D. L. Chen, et al., 2008: Spectral analysis of weekly variation in PM10 mass concentration and meteorological conditions over China. Atmos. Environ., 42, 655–666, doi: 10.1016/j.atmosenv.2007.09.075.CrossRefGoogle Scholar
  6. Cooper, O. R., J. L. Moody, D. D. Parrish, et al., 2001: Trace gas signatures of the airstreams within North Atlantic cyclones: Case studies from the North Atlantic Regional Experiment (NARE’97) aircraft intensive. J. Geophys. Res., 106(D6), 5437–5456, doi: 10.1029/2000JD900574.CrossRefGoogle Scholar
  7. Duan, F. K., K. B. He, Y. L. Ma, et al., 2006: Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–2002. Sci. Total Environ., 355, 264–275, doi: 10.1016/j.scitotenv.2005.03.001.CrossRefGoogle Scholar
  8. Fann, N., A. D. Lamson, S. C. Anenberg, et al., 2012: Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal., 32, 81–95, doi: 10.1111/j.1539-6924.2011.01630.x.CrossRefGoogle Scholar
  9. Fung, W. Y., and R. G. Wu, 2014: Relationship between intraseasonal variations of air pollution and meteorological variables in Hong Kong. Ann. GIS, 20, 217–226, doi: 10.1080/19475683.2014.945480.CrossRefGoogle Scholar
  10. Han, S. Q., H. Bian, X. X. Tie, et al., 2009: Impact of nocturnal planetary boundary layer on urban air pollutants: Measurements from a 250-m tower over Tianjin, China. J. Hazard. Mater., 162, 264–269, doi: 10.1016/j.jhazmat.2008.05.056.CrossRefGoogle Scholar
  11. He, S. S., B. T. Zhao, Z. Y. Yu, et al., 2014: Development and comparison of national ambient air quality standards in China. Environ. Monit. China, 30, 50–55.Google Scholar
  12. Jacob, D. J., and D. A. Winner, 2009: Effect of climate change on air quality. Atmos. Environ., 43, 51–63, doi: 10.1016/j.atmosenv.2008.09.051.CrossRefGoogle Scholar
  13. Ji, D. S., Y. S. Wang, L. L. Wang, et al., 2012: Analysis of heavy pollution episodes in selected cities of northern China. Atmos. Environ., 50, 338–348, doi: 10.1016/j.atmosenv.2011.11.053.CrossRefGoogle Scholar
  14. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  15. Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys., 13, 4501–4514, doi: 10.5194/acp-13-4501-2013.CrossRefGoogle Scholar
  16. Liu, Z. R., B. Hu, L. L. Wang, et al., 2015: Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res., 22, 627–642, doi: 10.1007/s11356-014-3347-0.CrossRefGoogle Scholar
  17. Lv, B. L., B. Zhang, and Y. Q. Bai, 2016: A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012. Atmos. Environ., 124, 98–108, doi: 10.1016/j.atmosenv.2015.09.031.CrossRefGoogle Scholar
  18. Mu, Q., and H. Liao, 2014: Simulation of the interannual variations of aerosols in China: Role of variations in meteorological parameters. Atmos. Chem. Phys., 14, 9597–9612, doi: 10.5194/acp-14-9597-2014.CrossRefGoogle Scholar
  19. Niu, F., Z. P. Li, C. Li, et al., 2010: Increase of wintertime fog in China: Potential impacts of weakening of the East Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res., 115(D7), D00K20.Google Scholar
  20. Ordóñez, C., H. Mathis, M. Furger, et al., 2005: Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos. Chem. Phys., 5, 1187–1203, doi: 10.5194/acp-5-1187-2005.CrossRefGoogle Scholar
  21. Pope, C. A., M. Ezzati, and D. W. Dockery, 2009: Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med., 360, 376–386, doi: 10.1056/NEJMsa0805646.CrossRefGoogle Scholar
  22. Qu, W. J., R. Arimoto, X. Y. Zhang, et al., 2010: Spatial distribution and interannual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmos. Chem. Phys., 10, 5641–5662, doi: 10.5194/acp-10-5641-2010.CrossRefGoogle Scholar
  23. Quan, J., Q. Zhang, H. He, et al., 2011: Analysis of the formation of fog and haze in North China Plain (NCP). Atmos. Chem. Phys., 11, 8205–8214, doi: 10.5194/acp-11-8205-2011.CrossRefGoogle Scholar
  24. Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40, doi: 10.1016/j.partic.2012.04.005.CrossRefGoogle Scholar
  25. Rigby, M., and R. Toumi, 2008: London air pollution climatology: Indirect evidence for urban boundary layer height and wind speed enhancement. Atmos. Environ., 42, 4932–4947, doi: 10.1016/j.atmosenv.2008.02.031.CrossRefGoogle Scholar
  26. Rohde, R. A., and R. A. Muller, 2015: Air pollution in China: Mapping of concentrations and sources. PLoS One, 10, e0135749, doi: 10.1371/journal.pone.0135749.CrossRefGoogle Scholar
  27. Tao, M. H., L. F. Chen, L. Su, et al., 2012: Satellite observation of regional haze pollution over the North China Plain. J. Geophys. Res. Atmos., 117(D12), D12203.CrossRefGoogle Scholar
  28. Tian, G. J., Z. Qiao, and X. L. Xu, 2014: Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001–2012 in Beijing. Environ. Pollut., 192, 266–274, doi: 10.1016/j.envpol.2014.04.036.CrossRefGoogle Scholar
  29. Wang, F., D. S. Chen, S. Y. Cheng, et al., 2010: Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis. Environ. Modell. Softw., 25, 927–934, doi: 10.1016/j.envsoft.2010.02.004.CrossRefGoogle Scholar
  30. Wang, J. L., Z. Xie, Y. H. Zhang, et al., 2004: The research on the mass concentration characteristics of fine particles in Beijing. Acta Meteor. Sinica, 62, 104–111. (in Chinese)Google Scholar
  31. Wang, Z. B., M. Hu, Z. J. Wu, et al., 2013: Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmos. Chem. Phys., 13, 10159–10170, doi: 10.5194/acp-13-10159-2013.CrossRefGoogle Scholar
  32. Wei, P., S. Y. Cheng, J. B. Li, et al., 2011: Impact of boundarylayer anticyclonic weather system on regional air quality. Atmos. Environ., 45, 2453–2463, doi: 10.1016/j.atmosenv.2011.01.045.CrossRefGoogle Scholar
  33. Wise, E. K., and A. C. Comrie, 2005: Meteorologically adjusted urban air quality trends in the southwestern United States. Atmos. Environ., 39, 2969–2980, doi: 10.1016/j.atmosenv.2005.01.024.CrossRefGoogle Scholar
  34. Xu, W. Y., C. S. Zhao, L. Ran, et al., 2011: Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North China Plain. Atmos. Chem. Phys., 11, 4353–4369, doi: 10.5194/acp-11-4353-2011.CrossRefGoogle Scholar
  35. Yan, L. B., X. D. Liu, P. Yang, et al., 2011: Study of the impact of summer monsoon circulation on spatial distribution of aerosols in East Asia based on numerical simulations. J. Appl. Meteor. Climatol., 50, 2270–2282, doi: 10.1175/2011JAMCD-11-06.1.CrossRefGoogle Scholar
  36. Yang, Y., H. Liao, and J. Li, 2014: Impacts of the East Asian summer monsoon on interannual variations of summertime surface- layer ozone concentrations over China. Atmos. Chem. Phys., 14, 6867–6879, doi: 10.5194/acp-14-6867-2014.CrossRefGoogle Scholar
  37. Ye, X. X., Y. Song, X. H. Cai, et al., 2016: Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ., 124, 129–145, doi: 10.1016/j.atmosenv.2015.06.011.CrossRefGoogle Scholar
  38. Zhang, H. L., Y. G. Wang, J. L. Hu, et al., 2015: Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ. Res., 140, 242–254, doi: 10.1016/j.envres.2015.04.004.CrossRefGoogle Scholar
  39. Zhang, J. P., T. Zhu, Q. H. Zhang, et al., 2012: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys., 12, 5031–5053, doi: 10.5194/acp-12-5031-2012.CrossRefGoogle Scholar
  40. Zhang, L., H. Liao, and J. P. Li, 2010a: Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res., 115(D7), D00K05.Google Scholar
  41. Zhang, W. J., D. Q. Xu, G. S. Zhuang, et al., 2010b: Characteristics of ambient 1-min PM2.5 variation in Beijing. Environ. Monit. Assess., 165, 137–146, doi: 10.1007/s10661-009-0933-6.CrossRefGoogle Scholar
  42. Zhang, Y., A. J. Ding, H. T. Mao, et al., 2016: Impact of synoptic weather patterns and interdecadal climate variability on air quality in the North China Plain during 1980–2013. Atmos. Environ., 124, 119–128, doi: 10.1016/j.atmosenv.2015.05.063.CrossRefGoogle Scholar
  43. Zhao, S. P., Y. Yu, D. Y. Yin, et al., 2016b: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int., 86, 92–106, doi: 10.1016/j.envint.2015.11.003.CrossRefGoogle Scholar
  44. Zhao, W. C., K. M. Hu, G. Huang, et al., 2016a: The developing, maintaining, and diminishing process of summertime pollution in urban area of Beijing. Clim. Environ. Res., 21, 479–489.Google Scholar
  45. Zhao, X. J., X. L. Zhang, X. F. Xu, et al., 2009: Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ., 43, 2893–2900, doi: 10.1016/j.atmosenv.2009.03.009.CrossRefGoogle Scholar
  46. Zhu, J. L., H. Liao, and J. P. Li, 2012: Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett., 39, L09809, doi: 10.1029/2012GL051428.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ting You
    • 1
    • 2
  • Renguang Wu
    • 2
    • 3
  • Gang Huang
    • 3
    • 4
    • 5
    • 6
  • Guangzhou Fan
    • 1
  1. 1.College of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  2. 2.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  5. 5.Joint Center for Global Change StudiesBeijingChina
  6. 6.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations