The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights
- 22 Downloads
Abstract
We characterize the weights for the Stieltjes transform and the Calderón operator to be bounded on the weighted variable Lebesgue spaces \(L_w^{p(\cdot )}(0,\infty )\), assuming that the exponent function \({p(\cdot )}\) is log-Hölder continuous at the origin and at infinity. We obtain a single Muckenhoupt-type condition by means of a maximal operator defined with respect to the basis of intervals \(\{ (0,b) : b>0\}\) on \((0,\infty )\). Our results extend those in Duoandikoetxea et al. (Indiana Univ Math J 62(3):891–910, 2013) for the constant exponent \(L^p\) spaces with weights. We also give two applications: the first is a weighted version of Hilbert’s inequality on variable Lebesgue spaces, and the second generalizes the results in Soria and Weiss (Indiana Univ Math J 43(1):187–204, 1994) for integral operators to the variable exponent setting.
Keywords
Calderón operator Hardy operator Stieltjes transform Maximal operator Weighted inequalities Muckenhoupt weights Variable Lebesgue spacesMathematics Subject Classification
Primary 42B25 Secondary 26D15 42B35Notes
References
- 1.Andersen, K.F.: Weighted inequalities for the Stieltjes transformation and Hilbert’s double series. Proc. R. Soc. Edinb. Sect. A 86(1–2), 75–84 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320(2), 727–735 (1990)MathSciNetzbMATHGoogle Scholar
- 3.Bandaliev, R.A.: The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces. Czechoslov. Math. J. 60(2), 327–337 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bandaliev, R.A.: Corrections to the paper “The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces”. Czechoslov. Math. J. 63(4), 1149–1152 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Bastero, J., Milman, M., Ruiz, F.J.: On the connection between weighted norm inequalities, commutators and real interpolation. Mem. Am. Math. Soc. 154, 731 (2001)MathSciNetzbMATHGoogle Scholar
- 6.Berezhnoi, E.I.: Two-weighted estimations for the Hardy–Littlewood maximal function in ideal Banach spaces. Proc. Am. Math. Soc. 127(1), 79–87 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak–Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39(1), 23–50 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Cruz-Uribe, D.: Two weight inequalities for fractional integral operators and commutators. In: Martin-Reyes, F.J. (ed.) VI International Course of Mathematical Analysis in Andalusia, pp. 25–85. World Scientific, Singapore (2016)Google Scholar
- 9.Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)zbMATHCrossRefGoogle Scholar
- 11.Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394(2), 744–760 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Cruz-Uribe, D., Mamedov, F.I.: On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces. Rev. Mat. Complut. 25(2), 335–367 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Cruz-Uribe, D., Wang, L.-A.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Am. Math. Soc. 369(2), 1205–1235 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)MathSciNetzbMATHGoogle Scholar
- 15.Diening, L., Harjulehto, P., Hästö, P., R\(\mathring{{\rm u}}\)žička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2011. Springer, Heidelberg (2017)zbMATHCrossRefGoogle Scholar
- 16.Diening, L., Samko, S.: Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 10(1), 1–18 (2007)MathSciNetzbMATHGoogle Scholar
- 17.Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. (4) 192(4), 553–568 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: Calderón weights as Muckenhoupt weights. Indiana Univ. Math. J. 62(3), 891–910 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: On the \(A_\infty \) conditions for general bases. Math. Z. 282(3–4), 955–972 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Gogatishvili, A., Kufner, A., Persson, L.-E.: The weighted Stieltjes inequality and applications. Math. Nachr. 286(7), 659–668 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Gogatishvili, A., Kufner, A., Persson, L.-E., Wedestig, A.: An equivalence theorem for integral conditions related to Hardy’s inequality. Real Anal. Exch. 29(2), 867–880 (2003/2004)Google Scholar
- 22.Gogatishvili, A., Persson, L.-E., Stepanov, V.D., Wall, P.: Some scales of equivalent conditions to characterize the Stieltjes inequality: the case \(q < p\). Math. Nachr. 287(2–3), 242–253 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Gorosito, O., Pradolini, G., Salinas, O.: Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures. Czechoslov. Math. J. 60(4), 1007–1023 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Gorosito, O., Pradolini, G., Salinas, O.: Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof. Rev. Un. Mat. Argent. 53(1), 25–27 (2012)MathSciNetzbMATHGoogle Scholar
- 25.Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2), 1 (1925). (Records of Proc. XLV-XLVI) Google Scholar
- 26.Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (Reprint of the 1952 edition) Google Scholar
- 27.Harman, A., Mamedov, F.I.: On boundedness of weighted Hardy operator in \(L^{p(\cdot )}\) and regularity condition. J. Inequal. Appl. 14, Art. ID 837951 (2010)Google Scholar
- 28.Hedberg, L.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Hytönen, T.: The \(A_2\) theorem: remarks and complements. In: Cifuentes, P., García-Cuerva, J., Garrigós, G., Hernández, E., Martell, J.M., Parcet, J., Rogers, K.M., Ruiz, A., Soria, F., Vargas, A. (eds.) Harmonic Analysis and Partial Differential Equations. Contemporary Mathematics, vol. 612, pp. 91–106. American Mathematical Society, Providence (2014)zbMATHCrossRefGoogle Scholar
- 30.Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(4), 592–618 (1991)zbMATHGoogle Scholar
- 31.Lerner, A.K.: On a dual property of the maximal operator on weighted variable \(L^p\) spaces. In: Cwikel, M., Milman, M. (eds.) Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth. Contemporary Mathematics, vol. 693, pp. 283–300. American Mathematical Society, Providence (2017)Google Scholar
- 32.Mamedov, F.I., Harman, A.: On a weighted inequality of Hardy type in spaces \(L^{p(\cdot )}\). J. Math. Anal. Appl. 353(2), 521–530 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Mamedov, F.I., Harman, A.: On a Hardy type general weighted inequality in spaces \(L^{p(\cdot )}\). Integral Eq. Oper. Theory 66(4), 565–592 (2010)zbMATHCrossRefGoogle Scholar
- 34.Mamedov, F.I., Mammadova, F.M., Aliyev, M.: Boundedness criterions for the Hardy operator in weighted \(L^{p(.)}(0,l)\) space. J. Convex Anal. 22(2), 553–568 (2015)MathSciNetzbMATHGoogle Scholar
- 35.Mamedov, F.I., Zeren, Y.: On equivalent conditions for the general weighted Hardy type inequality in space \(L^{p(\cdot )}\). Z. Anal. Anwend. 31(1), 55–74 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Mashiyev, R.A., Çekiç, B., Mamedov, F.I., Ogras, S.: Hardy’s inequality in power-type weighted \(L^{p(\cdot )}(0,\infty )\) spaces. J. Math. Anal. Appl. 334(1), 289–298 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972). (Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I) MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261–274 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Orlicz, W.: Über konjugierte exponentenfolgen. Studia Math. 3, 200–211 (1931)zbMATHCrossRefGoogle Scholar
- 41.Schur, J.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math. 140, 1–28 (1911)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Sinnamon, G.: A note on the Stieltjes transformation. Proc. R. Soc. Edinb. Sect. A 110(1–2), 73–78 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43(1), 187–204 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Widder, D.V.: The Laplace Transform. Princeton Mathematical Series, vol. 6, 2nd edn. Princeton University Press, Princeton (1946)Google Scholar