On the depth and Stanley depth of the integral closure of powers of monomial ideals
Article
First Online:
- 4 Downloads
Abstract
Let \({\mathbb {K}}\) be a field and \(S={\mathbb {K}}[x_1,\ldots ,x_n]\) be the polynomial ring in n variables over \({\mathbb {K}}\). For any monomial ideal I, we denote its integral closure by \({\overline{I}}\). Assume that G is a graph with edge ideal I(G). We prove that the modules \(S/\overline{I(G)^k}\) and \(\overline{I(G)^k}/\overline{I(G)^{k+1}}\) satisfy Stanley’s inequality for every integer \(k\gg 0\). If G is a non-bipartite graph, we show that the ideals \(\overline{I(G)^k}\) satisfy Stanley’s inequality for all \(k\gg 0\). For every connected bipartite graph G (with at least one edge), we prove that \(\mathrm{sdepth}(I(G)^k)\ge 2\), for any positive integer \(k\le \mathrm{girth}(G)/2+1\). This result partially answers a question asked in Seyed Fakhari (J Algebra 489:463–474, 2017). For any proper monomial ideal I of S, it is shown that the sequence \(\{\mathrm{depth}(\overline{I^k}/\overline{I^{k+1}})\}_{k=0}^{\infty }\) is convergent and \(\lim _{k\rightarrow \infty }\mathrm{depth}(\overline{I^k}/\overline{I^{k+1}})=n-\ell (I)\), where \(\ell (I)\) denotes the analytic spread of I. Furthermore, it is proved that for any monomial ideal I, there exists an integer s such that for every integer \(m\ge 1\). We also determine a value s for which the above inequality holds. If I is an integrally closed ideal, we show that \(\mathrm{depth}(S/I^m)\le \mathrm{depth}(S/I)\), for every integer \(m\ge 1\). As a consequence, we obtain that for any integrally closed monomial ideal I and any integer \(m\ge 1\), we have \(\mathrm{Ass}(S/I)\subseteq \mathrm{Ass}(S/I^m)\).
$$\begin{aligned} \mathrm{depth} (S/I^{sm}) \le \mathrm{depth} (S/{\overline{I}}), \end{aligned}$$
Keywords
Depth Edge ideal Integral closure Stanley depth Stanley’s inequalityMathematics Subject Classification
13C15 05E40 13B22Notes
Acknowledgements
The author thanks Irena Swanson for suggesting determinantal trick in the proof of Lemma 4.4. He also thanks the referee for careful reading of the paper and for valuable comments.
References
- 1.Alilooee, A., Banerjee, A.: Powers of edge ideals of regularity three bipartite graphs. J. Commut. Algebra 9, 441–454 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Alipour, A., Seyed Fakhari, S.A., Yassemi, S.: Stanley depth of factor of polymatroidal ideals and edge ideal of forests. Arch. Math. (Basel) 105, 323–332 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86(1), 35–39 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
- 5.Burch, L.: Codimension and analytic spread. Proc. Camb. Philos. Soc. 72, 369–373 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Duval, A.M., Goeckner, B., Klivans, C.J., Martin, J.L.: A non-partitionable Cohen–Macaulay simplicial complex. Adv. Math. 299, 381–395 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Herzog, J.: A survey on Stanley depth. In: Bigatti, A., Giménez, P., Sáenz-de-Cabezón, E. (eds.) Monomial Ideals, Computations and Applications. Proceedings of MONICA 2011. Lecture Notes in Mathematics, vol. 2083. Springer (2013)Google Scholar
- 8.Herzog, J., Hibi, T.: Monomial Ideals. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
- 9.Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291(2), 325–650 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Herzog, J., Rauf, A., Vladoiu, M.: The stable set of associated prime ideals of a polymatroidal ideal. J. Algebraic Combin. 37, 289–312 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Herzog, J., Takayama, Y., Terai, N.: On the radical of a monomial ideal. Arch. Math. (Basel) 85(5), 397–408 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Hoa, L.T., Trung, T.N.: Stability of depth and Cohen–Macaulayness of integral closures of powers of monomial ideals. Acta Math. Vietnam 43, 67–81 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Huneke, C., Swanson, I.: Integral Closure of Ideals Rings, and Modules, London Mathematical Society, Lecture Note Series vol. 336. Cambridge University Press, Cambridge (2006)Google Scholar
- 14.Popescu, D.: Bounds of Stanley depth. An. St. Univ. Ovidius. Constanta 19(2), 187–194 (2011)MathSciNetzbMATHGoogle Scholar
- 15.Pournaki, M.R., Seyed Fakhari, S.A., Tousi, M., Yassemi, S.: What is \(\ldots \) Stanley depth? Not. Am. Math. Soc. 56(9), 1106–1108 (2009)MathSciNetzbMATHGoogle Scholar
- 16.Pournaki, M.R., Seyed Fakhari, S.A., Yassemi, S.: Stanley depth of powers of the edge ideal of a forest. Proc. Am. Math. Soc. 141(10), 3327–3336 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Seyed Fakhari, S.A.: Stanley depth of the integral closure of monomial ideals. Collect. Math. 64, 351–362 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Seyed Fakhari, S.A.: Stanley depth of weakly polymatroidal ideals and squarefree monomial ideals. Ill. J. Math. 57(3), 871–881 (2013)MathSciNetzbMATHGoogle Scholar
- 19.Seyed Fakhari, S.A.: Depth, Stanley depth and regularity of ideals associated to graphs. Arch. Math. (Basel) 107, 461–471 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Seyed Fakhari, S.A.: On the Stanley depth of powers of edge ideals. J. Algebra 489, 463–474 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Seyed Fakhari, S.A.: Depth and Stanley depth of symbolic powers of cover ideals of graphs. J. Algebra 492, 402–413 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Seyed Fakhari, S.A.: Stanley depth and symbolic powers of monomial ideals. Math. Scand. 120, 5–16 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Singla, P.: Minimal monomial reductions and the reduced fiber ring of an extremal ideal. Ill. J. Math. 51(4), 1085–1102 (2007)MathSciNetzbMATHGoogle Scholar
- 24.Stanley, R.P.: Linear Diophantine equations and local cohomology. Invent. Math. 68(2), 175–193 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Takayama, Y.: Combinatorial characterizations of generalized Cohen–Macaulay monomial ideals. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 48, 327–344 (2005)MathSciNetzbMATHGoogle Scholar
- 26.Vasconcelos, W.: Integral Closure, Rees Algebras, Multiplicities, Algorithms. Springer Monographs in Mathematics. Springer, Berlin (2005)zbMATHGoogle Scholar
- 27.Villarreal, R.H.: Monomial Algebras. Dekker, New York (2001)zbMATHGoogle Scholar
Copyright information
© Universitat de Barcelona 2019