Collectanea Mathematica

, Volume 70, Issue 2, pp 295–321 | Cite as

Moduli spaces of bundles and Hilbert schemes of scrolls over \(\nu \)-gonal curves

  • Youngook Choi
  • Flaminio FlaminiEmail author
  • Seonja Kim


The aim of this paper is twofold. We first strongly improve our previous main result Choi et al. (Proc Am Math Soc 146(8):3233–3248, 2018, Theorem 3.1), concerning classification of irreducible components of the Brill–Noether locus parametrizing rank 2 semistable vector bundles of suitable degrees d, with at least \(d-2g+4\) independent global sections, on a general \(\nu \)-gonal curve C of genus g. We then uses this classification to study several properties of the Hilbert scheme of suitable surface scrolls in projective space, which turn out to be special and stable.


Stable rank 2 bundles Brill–Noether loci General \(\nu \)-gonal curves Hilbert schemes 

Mathematics Subject Classification

14H60 14D20 14J26 



The authors thank KIAS and Dipartimento di Matematica Universita’ di Roma “Tor Vergata” for the warm atmosphere and hospitality during the collaboration and the preparation of this article. The authors are indebted to the referee for the careful reading of the first version of the paper and for valuable comments and suggestions which have certainly improved the readability of the paper.


  1. 1.
    Arbarello, E., Cornalba, M.: Footnotes to a paper of Beniamino Segre. Math. Ann. 256, 341–362 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves I. Springer, Berlin (1984)zbMATHGoogle Scholar
  3. 3.
    Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves II. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Choi, Y., Flamini, F., Kim, S.: Brill–Noether loci of rank-two bundles on a general \(\nu \)-gonal curve. Proc. Am. Math. Soc. 146(8), 3233–3248 (2018)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ciliberto, C., Flamini, F.: Extensions of line bundles and Brill–Noether loci of rank-two vector bundles on a general curve. Revue Roumaine des Math. Pures et App. 60(3), 201–255 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wyley Classics, New York (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hartshorne, R.: Algebraic geometry, Graduate Texts in Math. 52, Springer, New York (1977)Google Scholar
  8. 8.
    Lange, H., Narasimhan, M.S.: Maximal subbundles of rank two vector bundles on curves. Math. Ann. 266, 55–72 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lange, H., Newstead, P., Strehl, V.: Non-emptiness of Brill–Noether loci in \(M(2,L)\). Int. J. Math. 26(13), 1550108 (2015). 26 ppCrossRefzbMATHGoogle Scholar
  10. 10.
    Laumon, G.: Fibres vectoriels speciaux. Bull. Soc. Math. France 119, 97–119 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Maruyama, M.: On automorphism group of ruled surfaces. J. Math. Kyoto Univ. 11, 89–112 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Keem, C., Kim, S.: On the Clifford index of a general \((e+2)\)-gonal curve. Manuscipta Math. 63, 83–88 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sernesi, E.: Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften, 334. Springer, Berlin (2006)Google Scholar
  14. 14.
    Sundaram, N.: Special divisors and vector bundles. Tôhoku Math. J. 39, 175–213 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Teixidor, M.: Brill–Noether theory for vector bundles of rank 2. Tôhoku Math. J. 43, 123–126 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2018

Authors and Affiliations

  1. 1.Department of Mathematics EducationYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Dipartimento di MatematicaUniversita’ degli Studi di Roma Tor VergataRomeItaly
  3. 3.Department of Electronic EngineeringChungwoon UniversityIncheonRepublic of Korea

Personalised recommendations