Collectanea Mathematica

, Volume 69, Issue 3, pp 337–357 | Cite as

Koszul properties of the moment map of some classical representations

  • Aldo ConcaEmail author
  • Hans-Christian Herbig
  • Srikanth B. Iyengar


This work concerns the moment map \(\mu \) associated with the standard representation of a classical Lie algebra. For applications to deformation quantization it is desirable that \(S/(\mu )\), the coordinate algebra of the zero fibre of \(\mu \), be Koszul. The main result is that this algebra is not Koszul for the standard representation of \(\mathfrak {sl}_{n}\), and of \(\mathfrak {sp}_{n}\). This is deduced from a computation of the Betti numbers of \(S/(\mu )\) as an S-module, which are of interest also from the point of view of commutative algebra.


Betti number Classical Lie algebra Koszul algebra Moment map Poincaré series Standard representation 

Mathematics Subject Classification

13D02 16S37 53D20 



Our thanks to Lucho Avramov for helpful conversations regarding this work; in particular, for pointing out Lemma 3.3, and the work of Hreinsdottir [13]. Part of this article is based on work supported by the National Science Foundation under Grant No. 0932078000, while AC and SBI were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the 2012–2013 Special Year in Commutative Algebra. AC was supported by INdAM-GNSAGA and PRIN “Geometry of Algebraic Varieties” 2015EYPTSB_008. SBI was partly supported by NSF Grants DMS-1503044.


  1. 1.
    Avramov, L.L.: The Hopf algebra of a local ring. Izv. Akad. Nauk SSSR Ser. Mat. 38, 253–277 (1974)MathSciNetGoogle Scholar
  2. 2.
    Avramov, L.L.: Infinite free resolutions. In: Six Lectures on Commutative Algebra (Bellaterra, 1996). Progress in Mathematics, vol. 166, pp. 1–118, Birkhuser, Basel (1998)Google Scholar
  3. 3.
    Avramov, L.L., Conca, A., Iyengar, S.B.: Free resolutions over commutative Koszul algebras. Math. Res. Lett. 17, 197–210 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avramov, L.L., Conca, A., Iyengar, S.B.: Subadditivity of syzygies of Koszul algebras. Math. Ann. 361, 511–534 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bordemann, M., Herbig, H.-C., Pflaum, M.J.: A homological approach to singular reduction in deformation quantization. In: Sternberg, S. (ed.) Singularity Theory, pp. 443–461. World Sci. Publ, Hackensack (2007)CrossRefGoogle Scholar
  6. 6.
    Bruns, W., Vetter, U.: Determinantal rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)Google Scholar
  7. 7.
    Conca, A., De Negri, E., Rossi, M.E.: Koszul Algebras and Regularity, Commutative Algebra, 285–315. Springer, New York (2013)Google Scholar
  8. 8.
    Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory, Proceedings of Fez Conference 1997. Lectures Notes in Pure and Applied Mathematics, vol. 205. Marcel Dekker, New York (1999)Google Scholar
  9. 9.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Library. Wiley, New York (1994)Google Scholar
  10. 10.
    Gugenheim, V.K.A.M., May, J.P.: On the Theory and Applications of Differential Torsion Products, Memoirs of the American Mathematical Society, 142. American Mathematical Society, Providence (1974)Google Scholar
  11. 11.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  12. 12.
    Herbig, H.-C., Schwarz, G.W.: The Koszul complex of a moment map. J. Symplectic Geom. 11, 497–508 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hreinsdottir, F.: The Koszul dual of the ring of commuting matrices. Commun. Algebra 26, 3807–3819 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Koshy, T.: Catalan Numbers with Applications, p. 422. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  15. 15.
    Kraines, D.: Massey higher products. Trans. Am. Math. Soc. 124, 431–449 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    May, J.P.: Matrix massey products. J. Algebra 12, 533–568 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    The On-Line Encyclopedia of Integer Sequences, published electronically at (2014)
  18. 18.
    Polischuk, A., Positselski, L.: Quadratic Algebras. AMS University Lecture Series (2005)Google Scholar
  19. 19.
    Roos, J.-E.: Homological properties of the homology algebra of the Koszul complex of a local ring: examples and questions. J. Algebra 465, 399–436 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shapiro, L.W.: A Catalan triangle. Discret. Math. 14, 83–90 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schwarz, G.W.: Differential operators on quotients of simple groups. J. Algebra 169, 248–273 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schwarz, G.W.: Lifting differential operators from orbit spaces. Ann. Sci. École Norm. Super. 28(4), 253–305 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stanley, R.P.: Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. xii, p. 581. Cambridge University Press, Cambridge (1999)Google Scholar
  24. 24.
    Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math. 1, 14–27 (1957)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Vinberg, È.B.: Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen. 20, 1–13 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversitá di GenovaGenoaItaly
  2. 2.Departamento de Matemática AplicadaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations