Collectanea Mathematica

, Volume 69, Issue 3, pp 437–449 | Cite as

Disjoint hypercyclic weighted pseudo-shifts on Banach sequence spaces

  • Ya Wang
  • Ze-Hua ZhouEmail author


In this article, we characterize the disjoint hypercyclicity of finite weighted pseudo-shifts on an arbitrary Banach sequence space. Moreover, we obtain some interesting consequences of this characterization.


Disjoint hypercyclic Weighted pseudo-shifts Disjoint Blow-up/Collapse Property 

Mathematics Subject Classification

47A16 47B38 46E15 


  1. 1.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Google Scholar
  2. 2.
    Bernal-González, L.: Disjoint hypercyclic operators. Studia Math. 182(2), 113–131 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bès, J., Martin, Ö.: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houst. J. Math. 38(4), 1149–1163 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72(1), 15–40 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381, 843–856 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators. J. Funct. Anal. 263(5), 1283–1322 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336, 297–315 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. J. Studia Math. 157(1), 17–32 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext, Springer, New York (2011)Google Scholar
  10. 10.
    Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139(1), 47–68 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Han, S.A., Liang, Y.X.: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. 67(3), 347–356 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hazarika, M., Arora, S.C.: Hypercyclic operator weighted shifts. Bull. Korean Math. Soc. 41(4), 589–598 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kitai, C.: Invariant closed sets for linear operators. Ph.D. thesis, Univ. of Toronto (1982)Google Scholar
  14. 14.
    León-Saavedra, F.: Notes about the Hypercyclicity Criterion. Math. Slovaca 53(3), 313–319 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Martin, Ö. : Disjoint hypercyclic and supercyclic composition operators. Ph.D. thesis, Bowling Green State University (2010)Google Scholar
  16. 16.
    Salas, H.: Dual disjoint hypercyclic weighted shifts. J. Math. Anal. Appl. 374(1), 106–117 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sanders, R., Shkarin, S.: Existence of disjoint weakly mixing operators that fail to satisfy the Disjoint Hypercyclicity Criterion. J. Math. Anal Appl. 417(2), 834–855 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367(2), 713–715 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Salas, H.: The strong disjoint blow-up/collapse property. J. Funct. Spaces Appl. Article ID 146517 (2013)Google Scholar

Copyright information

© Universitat de Barcelona 2018

Authors and Affiliations

  1. 1.School of MathematicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of MathematicsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations