Advertisement

Collectanea Mathematica

, Volume 69, Issue 3, pp 451–477 | Cite as

The structure of the inverse system of level K-algebras

  • Shreedevi K. Masuti
  • Laura Tozzo
Article

Abstract

Macaulay’s inverse system is an effective method to construct Artinian K-algebras with the additional properties of being, for example, Gorenstein, level, or having any specific socle type. Recently, Elias and Rossi (Adv Math 314:306–327, 2017) gave the structure of the inverse system of d-dimensional Gorenstein K-algebras for any \(d>0\). In this paper we extend their result by establishing a one-to-one correspondence between d-dimensional level K-algebras and suitable submodules of the divided power ring. We give several examples to illustrate our result.

Keywords

Macaulay’s inverse system Level K-algebras Divided power ring Gorenstein K-algebras 

Mathematics Subject Classification

13A02 13H10 13J05 13F20 

Notes

Acknowledgements

The first author was supported by INdAM COFOUND Fellowships cofounded by Marie Curie actions, Italy. We thank our advisor M. E. Rossi for suggesting the problem and providing many useful ideas throughout the preparation of this manuscript. We thank Juan Elias for providing us the updated version of Inverse-syst.lib and clarifying our doubts in Singular. We would also like to thank Alessandro De Stefani for providing us the proof of Proposition 4(b) in the one-dimensional case, and Aldo Conca and Matteo Varbaro for useful discussions on the examples of level rings.

References

  1. 1.
    Bertella, V.: Hilbert function of local Artinian level rings in codimension two. J. Algebra 321, 1429–1442 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boij, M.: Artin level algebras. Ph.D. thesis, Royal Institute of Technology, Stockholm (1994)Google Scholar
  3. 3.
    Boij, M.: Betti numbers of compressed level algebras. J. Pure Appl. Algebra 134(2), 111–131 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boij, M.: Artin level modules. J. Algebra 226(1), 361–374 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boij, M.: Reducible family of height three level algebras. J. Algebra 321(1), 86–104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Revised edn. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Bruns, W., Vetter, U.: Determinantal Rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ciliberto, C.: Algebra lineare. Bollati Boringhieri, Turin (1994)Google Scholar
  9. 9.
    Conca, A.: Divisor class group and canonical class of determinantal rings defined by ideals of minors of a symmetric matrix. Arch. Math. 63(3), 216–224 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0: a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016)
  11. 11.
    De Stefani, A.: Artinian level algebras of low socle degree. Commun. Algebra 42, 729–754 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)zbMATHGoogle Scholar
  13. 13.
    Elias, J., Iarrobino, A.: The Hilbert function of a Cohen–Macaulay local algebra: extremal Gorenstein algebras. J. Algebra 110(2), 344–356 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Elias, J.: Inverse-syst.lib: singular library for computing Macaulay’s inverse systems. www.ub.edu/C3A/elias/inverse-syst-v.5.2.lib. arXiv:1501.01786 (2015)
  15. 15.
    Elias, J., Rossi, M.E.: The structure of the inverse system of Gorenstein \(K\)-algebras. Adv. Math. 314, 306–327 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Emsalem, J.: Géométrie des points épais. Bull. Soc. Math. France 106(4), 399–416 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fouli, L.: A study on the core of ideals. Ph.D. thesis, Purdue University (2006)Google Scholar
  18. 18.
    Fröberg, R.: Connections between a local ring and its associated graded ring. J. Algebra 111(2), 300–305 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gabriel, P.: Objets injectifs dans les catégories abéliennes. Séminaire P. Dubriel 1958-1959 17, 1–32 (1959)Google Scholar
  20. 20.
    Geramita, A.V., Harima, T., Migliore, J.C., Shin, Y.S.: The Hilbert function of a level algebra. Mem. Am. Math. Soc. 186(872), vi+139 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Goto, S.: On the Gorensteinness of determinantal loci. J. Math. Kyoto Univ. 19(2), 371–374 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/ (2016)
  23. 23.
    Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  24. 24.
    Huneke, C., Trung, N.V.: On the core of ideals. Compos. Math. 141(1), 1–18 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Iarrobino, A.: Compressed algebras: artin algebras having given socle degrees and maximal length. Trans. Am. Math. Soc. 285(1), 337–378 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Iarrobino, A.: Associated graded algebra of a Gorenstein Artin algebra. Mem. Am. Math. Soc. 107(514), viii+115 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1994). (Revised reprint of the 1916 original; With an introduction by Paul Roberts)Google Scholar
  28. 28.
    Mantero, P., Xie, Y.: Generalized stretched ideals and Sally’s conjecture. J. Pure Appl. Algebra 220(3), 1157–1177 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Molinelli, S., Tamone, G.: On the Hilbert function of certain rings of monomial curves. J. Pure Appl. Algebra 101(2), 191–206 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Polini, C., Ulrich, B.: A formula for the core of an ideal. Math. Ann. 331(3), 487–503 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rossi, M.E., Valla, G.: Cohen–Macaulay local rings of embedding dimension \(e+d-3\). Proc. Lond. Math. Soc. (3) 80(1), 107–126 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rossi, M.E., Valla, G.: Hilbert Functions of Filtered Modules. Lecture Notes of the Unione Matematica Italiana, vol. 9. Springer-Verlag, Berlin (2010)Google Scholar
  33. 33.
    Stanley, R.: Cohen–Macaulay complexes. In: Higher combinatorics (Proceedings of NATO Advanced Study Institute, Berlin, 1976). NATO Advanced Study Institute Series. Series C: Mathematical and Physical Sciences, vol. 31, pp. 51–62. Reidel, Dordrecht (1977)Google Scholar
  34. 34.
    Stanley, R.: Combinatorics and Commutative Algebra. Progress in Mathematics, vol. 41, 2nd edn. Birkhäuser Boston Inc, Boston (1996)Google Scholar
  35. 35.
    Xie, Y.: Formulas for the multiplicity of graded algebras. Trans. Am. Math. Soc. 364(8), 4085–4106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  2. 2.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations