Advertisement

Collectanea Mathematica

, Volume 69, Issue 3, pp 395–405 | Cite as

Equivalent definitions of oscillating sequences of higher orders

  • Ruxi Shi
Article
  • 36 Downloads

Abstract

An oscillating sequence of order d is defined by the linearly disjointness from all \(\{e^{2\pi i P(n)} \}_{n=1}^{\infty }\) for all real polynomials P of degree smaller or equal to d. A fully oscillating sequence is defined to be an oscillating sequence of all orders. In this paper, we give several equivalent definitions of such sequences in terms of their disjointness from different dynamical systems on tori.

Keywords

Oscillating sequence Linearly disjoint Affine map on tori Quasi-unipotent 

Mathematics Subject Classification

11N37 37A45 

Notes

Acknowledgements

The authors are grateful to the anonymous reviewer for their valuable remarks.

References

  1. 1.
    Abdalaoui, E.H.E., Kulaga-Przymus, J., Lemanczyk, M., De La Rue, T.: The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete Contin. Dyn. Syst. Ser. A 37(6), 2899–2944 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beauregard, R., Fraleigh J.: A First Course in Linear Algebra: with Optional Introduction to Groups, Rings, and Fields. Houghton Mifflin Co., Boston (1973)Google Scholar
  3. 3.
    Dani, S.G.: Dynamical systems on homogeneous spaces. In: Dynamical Systems, Ergodic Theory and Applications, Encyclopedia of Mathematical Sciences, vol. 100, Springer, BerlinGoogle Scholar
  4. 4.
    Fan, A.H.: Oscillating sequences of higher orders and topological systems of quasi-discrete spectrum (2016, in preparation)Google Scholar
  5. 5.
    Fan, A.H.: Fully oscillating sequences and weighted multiple ergodic limit. Comptes Rendus de l’académie des Sci. Ser. I Math. 355(8), 866–870 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fan, A.H., Jiang, Y.: Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov-stability. Ergod. Theory Dyn. Syst. arXiv:1511.05022.  https://doi.org/10.1017/etds.2016.121
  7. 7.
    Liu, J., Sarnak, P.: The Möbius function and distal flows. Duke Math. J. 164(7), 1353–1399 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sarnak, P.: Three lectures on the Möbius function, randomness and dynamics. https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures.pdf. Accessed 2010
  9. 9.
    Sinai, Y.G.: On the notion of entropy of a dynamical system. Dokl. Russ. Acad. Sci. 124, 768–771 (1959)MathSciNetzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2017

Authors and Affiliations

  1. 1.LAMFA, UMR 7352 CNRSUniversité de PicardieAmiensFrance

Personalised recommendations