Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds

  • Maria João Ramalho
  • Stephanie Andrade
  • Joana Angélica LoureiroEmail author
  • Maria do Carmo PereiraEmail author
Review Article


Alzheimer’s disease (AD) is a form of dementia with high impact worldwide, accounting with more than 46 million cases. It is estimated that the number of patients will be four times higher in 2050. The initial symptoms of AD are almost imperceptible and typically involve lapses of memory in recent events. However, the available medicines still focus on controlling the symptoms and do not cure the disease. Regarding the advances in the discovery of new treatments for this devastating disease, natural compounds are gaining increasing relevance in the treatment of AD. Nevertheless, they present some limiting characteristics such as the low bioavailability and the low ability to cross the blood-brain barrier (BBB) that hinder the development of effective therapies. To overcome these issues, the delivery of natural products by targeting nanocarriers has aroused a great interest, improving the therapeutic activity of these molecules. In this article, a review of the research progress on drug delivery systems (DDS) to improve the therapeutic activity of natural compounds with neuroprotective effects for AD is presented.

Graphical abstract


Natural product Neurodegenerative disorder Drug delivery Brain delivery Blood-brain barrier Nanoparticle 


Funding information

This work was financially supported by project UID/EQU/00511/2019 - Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by national funds through FCT/MCTES (PIDDAC); Project POCI-01-0145-FEDER-006939, funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; Project “LEPABE-2-ECO-INNOVATION” – NORTE-01-0145-FEDER-000005, funded by Norte Portugal Regional Operational Program (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and FCT doctoral grant - SFRH/BD/129312/2017.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gaudreault R, Mousseau N. Mitigating Alzheimer’s disease with natural polyphenols: a review. Curr Alzheimer Res. 2019;16(6):529–43.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Loureiro JA, et al. Fluorinated beta-sheet breaker peptides. J Mater Chem B. 2014;2(16):2259–64.CrossRefGoogle Scholar
  3. 3.
    Yuan HD, et al. The traditional medicine and modern medicine from natural products. Molecules. 2016:21(5).PubMedCentralCrossRefGoogle Scholar
  4. 4.
    David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299–315.CrossRefGoogle Scholar
  5. 5.
    Andrade S, et al. Natural compounds for Alzheimer’s disease therapy: a systematic review of preclinical and clinical studies. Int J Mol Sci. 2019;20(9).PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Interaction of natural compounds with biomembrane models: a biophysical approach for the Alzheimer’s disease therapy. Colloids Surf B: Biointerfaces. 2019;180:83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Park K. Drug delivery of the future: chasing the invisible gorilla. J Control Release. 2016;240:2–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wais U, Jackson AW, He T, Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale. 2016;8(4):1746–69.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B: Biointerfaces. 2016;145:8–13.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ramalho MJ, Loureiro JA, Gomes B, Frasco MF, Coelho MA, Pereira MC. PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J Nanotechnol. 2015;6:1306–18.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brenza TM, Schlichtmann BW, Bhargavan B, Vela Ramirez JE, Nelson RD, Panthani MG, et al. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A. 2018;106(11):2881–90.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Semple SC, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm. 2006;62(2):155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Khongkow M, et al. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep. 2019;9(1):8278.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Li H, et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol. 2018;107:204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Loureiro JA, Gomes B, Coelho MA, do Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine. 2014;9(5):709–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–86.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8(6):1481–93.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gaspar DP, et al. Targeted delivery of lipid nanoparticles by means of surface chemical modification. Curr Org Chem. 2017;21(23):2360–75.CrossRefGoogle Scholar
  23. 23.
    Yang F, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wang P, Su C, Li R, Wang H, Ren Y, Sun H, et al. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res. 2014;92(2):218–31.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, et al. Protective effects of a natural product, curcumin, against amyloid beta induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J Investig Med. 2016;64(8):1220–34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu Z-J, et al. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front Pharmacol. 2016:7(261).Google Scholar
  27. 27.
    Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008;28(1):110–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15(6):558–66.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Harvey BS, et al. The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits amyloid-β evoked fibril formation and neuronal cell death in vitro. Food Chem. 2011;129(4):1729–36.CrossRefGoogle Scholar
  30. 30.
    Abbas S, Wink M. Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine. 2010;17(11):902–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Walker JM, Klakotskaia D, Ajit D, Weisman GA, Wood WG, Sun GY, et al. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. J Alzheimers Dis. 2015;44(2):561–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Biasibetti R, et al. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res. 2013;236(1):186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem. 2013;24(1):298–310.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tsai F-S, et al. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am J Chin Med. 2015;43(02):319–35.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T. Ferulic acid is a nutraceutical beta-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One. 2013;8(2):e55774.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhang Y, et al. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis. 2013;37(1):19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ono K, Hirohata M, Yamada M. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun. 2005;336(2):444–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yan JJ, Jung JS, Kim TK, Hasan A, Hong CW, Nam JS, et al. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull. 2013;36(1):140–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bhattacharya S, et al. Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer’s disease. PLoS One. 2014;9(2).PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wu Z, Zhao L, Chen X, Cheng X, Zhang Y. Galantamine attenuates amyloid-beta deposition and astrocyte activation in APP/PS1 transgenic mice. Exp Gerontol. 2015;72:244–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, et al. Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem. 2010;285(51):40180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res. 2002;67(1):30–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Peng Y, Jiang L, Lee DY, Schachter SC, Ma Z, Lemere CA. Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J Neurosci Res. 2006;84(4):903–11.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Xu SS, et al. Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Zhongguo Yao Li Xue Bao. 1999;20(6):486–90.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Xu SS, et al. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Zhongguo Yao Li Xue Bao. 1995;16(5):391–5.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rafii MS, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology. 2011;76(16):1389–94.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol. 2010;48(3):798–802.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shrivastava P, Vaibhav K, Tabassum R, Khan A, Ishrat T, Khan MM, et al. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem. 2013;24(4):680–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jimenez-Aliaga K, et al. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011;89(25-26):939–45.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Regitz C, Dussling LM, Wenzel U. Amyloid-beta (Abeta(1)(-)(4)(2))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res. 2014;58(10):1931–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang X, Hu J, Zhong L, Wang N, Yang L, Liu CC, et al. Quercetin stabilizes apolipoprotein e and reduces brain Aβ levels in amyloid model mice. Neuropharmacology. 2016;108:179–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim JH, et al. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Appl Biol Chem. 2016;59(5):721–8.CrossRefGoogle Scholar
  53. 53.
    Andrade S, et al. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol. 2018;9(1261).Google Scholar
  54. 54.
    Andrade S, et al. Interaction studies of amyloid beta-peptide with the natural compound resveratrol. In: 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). 2015.Google Scholar
  55. 55.
    Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem. 2005;280(45):37377–82.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ladiwala ARA, et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J Biol Chem. 2010;285(31):24228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience. 2015;310:641–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int. 2009;54(2):111–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ma XR, et al. Resveratrol improves cognition and reduces oxidative stress in rats with vascular dementia. Neural Regen Res. 2013;8(22):2050–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velázquez M, Martínez-Barboza G, Acosta-Martínez JP, et al. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res. 2003;35(2):80–4.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18(2):323–5.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kontush A, et al. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med. 2001;31(3):345–54.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med. 1997;336(17):1216–22.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin e and memantine on functional decline in alzheimer disease: the team-ad va cooperative randomized trial. JAMA. 2014;311(1):33–44.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA Neurol. 2017;74(5):567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ramalho MJ, Andrade S, Coelho MÁN, Loureiro JA, Pereira MC. Biophysical interaction of temozolomide and its active metabolite with biomembrane models: the relevance of drug-membrane interaction for Glioblastoma Multiforme therapy. Eur J Pharm Biopharm. 2019;136:156–63.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zupančič Š, Lavrič Z, Kristl J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur J Pharm Biopharm. 2015;93:196–204.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Saberi AH, Fang Y, McClements DJ. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J Colloid Interface Sci. 2013;411:105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shen L, Ji H-F. Low stability remedies the low bioavailability of curcumin. Trends Mol Med. 2012;18(7):363–4.CrossRefGoogle Scholar
  70. 70.
    Bennion BJ, Be NA, McNerney M, Lao V, Carlson EM, Valdez CA, et al. Predicting a drug’s membrane permeability: a computational model validated with in vitro permeability assay data. J Phys Chem B. 2017;121(20):5228–37.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ramalho MJ, Coelho MAN, Pereira MC. Chapter 18 - Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma: a review. In: Grumezescu AM, editor. Design and Development of New Nanocarriers: William Andrew Publishing; 2018. p. 687–722.Google Scholar
  72. 72.
    Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Fong Yen W, et al. Formulation and evaluation of galantamine gel as drug reservoir in transdermal patch delivery system. Sci World J. 2015;2015.Google Scholar
  74. 74.
    Gambini J, et al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longev. 2015;2015.CrossRefGoogle Scholar
  75. 75.
    Djiokeng Paka G, Doggui S, Zaghmi A, Safar R, Dao L, Reisch A, et al. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH Cell Line: role of poly(lactide-co-glycolide) polymeric matrix composition. Mol Pharm. 2016;13(2):391–403.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Doggui S, et al. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis. 2012;30(2):377–92.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Mathew A, et al. Curcumin nanoparticles- a gateway for multifaceted approach to tackle Alzheimer’s disease. In: 11th IEEE International Conference on Nanotechnology. 2011.Google Scholar
  78. 78.
    Mathew A, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7(3):1–10.Google Scholar
  79. 79.
    Fan S, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv. 2018;25(1):1091–102.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jia T, et al. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-beta1-42-injected mice. Int J Nanomedicine. 2016;11:3765–75.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 Mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 2010;7(3):815–25.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sun M, et al. Enhancement of transport of curcumin to brain in mice by poly( n-butylcyanoacrylate) nanoparticle. J Nanopart Res. 2010;12(8):3111–22.CrossRefGoogle Scholar
  83. 83.
    Kumar S, Kesharwani SS, Mathur H, Tyagi M, Bhat GJ, Tummala H. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur J Pharm Sci. 2016;82:86–96.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 Mice. AAPS J. 2013;15(2):324–36.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis. 2011;23(1):61–77.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, la Ferla B, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials. 2011;32(6):1635–45.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem. 2014;80:175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lazar AN, et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine. 2013;9(5):712–21.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Sokolik VV, Berchenko OG, Shulga SM. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J Alzheimers Dis Parkinsonism. 2017;7(4):1–6.Google Scholar
  90. 90.
    Taylor M, et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine. 2011;7(5):541–50.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Maiti P, Hall TC, Paladugu L, Kolli N, Learman C, Rossignol J, et al. A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5×-familial Alzheimer’s disease mice. Histochem Cell Biol. 2016;146(5):609–25.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Maiti P, Dunbar GL. Comparative neuroprotective effects of dietary curcumin and solid lipid curcumin particles in cultured mouse neuroblastoma cells after exposure to Aβ42. Int J Alzheimers Dis. 2017;2017:4164872.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B: Biointerfaces. 2015;134:88–97.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, et al. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem. 2013;106:134–44.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hagl S, Kocher A, Schiborr C, Kolesova N, Frank J, Eckert GP. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – impact on bioavailability. Neurochem Int. 2015;89:234–42.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Kuo Y-C, Lin C-C. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine. 2015;10:2653.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Huang N, et al. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget. 2017;8(46):81001.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Debnath K, Shekhar S, Kumar V, Jana NR, Jana NR. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces. 2016;8(31):20309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y, et al. Epigallocatechin-3-gallate (EGCG)-Stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6(11):8475–87.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Bondi ML, et al. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimers disease: preparation, characterization and cytotoxicity studies. Curr Nanosci. 2009;5(1):26–32.CrossRefGoogle Scholar
  102. 102.
    Picone P, Bondi ML, Montana G, Bruno A, Pitarresi G, Giammona G, et al. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic Res. 2009;43(11):1133–45.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale. 2015;7(28):12076–84.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Hanafy AS, Farid RM, Helmy MW, ElGamal S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016;23(8):3111–22.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, van Vuuren S, et al. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm. 2013;448(1):267–81.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34(2):272–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23(4):1434–43.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wahba SMR, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer’s disease in ovariectomized albino-rat model. Mater Sci Eng C. 2016;65:151–63.CrossRefGoogle Scholar
  109. 109.
    Loureiro J, et al. Resveratrol and Grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22(2):277.PubMedCentralCrossRefGoogle Scholar
  110. 110.
    Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:705–18.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Gao P, Ding P, Xu H, Yuan Z, Chen D, Wei J, et al. In vitro and in vivo characterization of huperzine a loaded microspheres made from end-group uncapped poly(d,l-lactide acid) and poly(d,l-lactide-co-glycolide acid). Chem Pharm Bull. 2006;54(1):89–93.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Gao P, Xu H, Ding P, Gao Q, Sun J, Chen D. Controlled release of huperzine A from biodegradable microspheres: in vitro and in vivo studies. Int J Pharm. 2007;330(1–2):1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm. 2013;446(1–2):16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal Piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–56.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Chonpathompikunlert P, Yoshitomi T, Han J, Isoda H, Nagasaki Y. The use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from Aβ-induced oxidative stress. Biomaterials. 2011;32(33):8605–12.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yusuf M, et al. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target. 2013;21(3):300–11.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Elnaggar YS, et al. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine. 2015;10:5459–73.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mizrahi M, et al. Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD. Nanomedicine. 2014;10(6):1353–63.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Sun D, Li N, Zhang W, Zhao Z, Mou Z, Huang D, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B: Biointerfaces. 2016;148:116–29.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kuo Y-C, Tsao C-W. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine. 2017;12:2857–69.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol. 2011;63(3):342–51.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci. 2018;199:80–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Moreno LCGEI, et al. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. International Journal of Pharmaceutics. 2017;517(1–2):50–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Nday CM, et al. Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J Inorg Biochem. 2015;145:51–64.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Halevas E. Encapsulation of flavonoid quercetin in PEGylated SiO2 nanoparticles against Cu(II)-induced oxidative stress. In: Proceedings of the 10th Panhellenic Interdisciplinary Conference on Alzheimer’s Disease and Related Disorders and 2nd Mediterranean Conference on Neurodegenerative Diseases. 2017. Thessaloniki, Greece.Google Scholar
  126. 126.
    Cheng C-S, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of Plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. ACS Appl Mater Interfaces. 2019;11(17):15322–31.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Lu X, et al. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm. 2009;375(1):89–96.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matté A, Battastini AM, et al. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol. 2013;47(3):1066–80.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Frozza RL, et al. Lipid-core nanocapsules improve the effects of resveratrol against Aβ-induced neuroinflammation. J Biomed Nanotechnol. 2013;9(12):2086–104.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Frozza RL, Bernardi A, Paese K, Hoppe JB, da Silva T, Battastini AM, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol. 2010;6(6):694–703.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Shea TB, et al. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J Alzheimers Dis. 2005;7(4):297–301.PubMedCrossRefGoogle Scholar
  132. 132.
    Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271–99.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ramalho MJ, Pereira MC. Preparation and characterization of polymeric nanoparticles: an interdisciplinary experiment. J Chem Educ. 2016;93(8):1446–51.CrossRefGoogle Scholar
  135. 135.
    Ramalho MJ, Coelho MAN, Pereira MC. Nanoparticles for delivery of vitamin D: challenges and opportunities. In: Gowder S, editor. A critical evaluation of vitamin D - clinical overview. Rijeka: InTech; 2017. p. Ch 11.Google Scholar
  136. 136.
    Ramalho MJ, et al. PLGA nanoparticles for calcitriol delivery. in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). 2015.Google Scholar
  137. 137.
    Ramalho MJ, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 2018;545(1):84–92.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Sharma S, et al. PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC Trends Anal Chem. 2016;80:30–40.CrossRefGoogle Scholar
  139. 139.
    Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5(4):447–54.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Li Y, Ju D. Chapter 12 - The application, neurotoxicity, and related mechanism of cationic polymers∗∗Conflict of Interests: All the Figures and Table in “The application, neurotoxicity, and related mechanism of cationic polymers” are original, unpublished materials designed and prepared by Yubin Li and Dianwen Ju. The authors declared that there’s no conflict of interests. In: Jiang X, Gao H, editors. Neurotoxicity of Nanomaterials and Nanomedicine. United States: Academic Press; 2017. p. 285–329.CrossRefGoogle Scholar
  141. 141.
    Xiong S, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol. 2013;87(6):1075–86.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Rodrigues de Azevedo C, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532(1):229–40.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173–90.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Patte-Mensah C, et al. Transfection of human neuroblastoma cells with Alzheimer’s disease brain hallmarks as a promising strategy to investigate the role of neurosteroidogenesis in neuroprotection. In: Genetically modified organisms and genetic engineering in research and therapy. Berlin: Karger Publishers; 2012. p. 50–9.CrossRefGoogle Scholar
  145. 145.
    Yang S-G, et al. A peptide binding to the β-site of APP improves spatial memory and attenuates Aβ burden in Alzheimer’s disease transgenic mice. PLoS One. 2012;7(11):e48540.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Oliveira DRB, et al. β-Carotene-loaded nanostructured lipid carriers produced by solvent displacement method. Food Res Int. 2016;90:139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Anajafi T, Mallik S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv. 2015;6(4):521–34.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zhang X-Y, Zhang P-Y. Polymersomes in nanomedicine-a review. Curr Nanosci. 2017;13(2):124–9.CrossRefGoogle Scholar
  150. 150.
    Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev. 2018;47(23):8572–610.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Poschenrieder ST, Schiebel SK, Castiglione K. Polymersomes for biotechnological applications: large-scale production of nano-scale vesicles. Eng Life Sci. 2017;17(1):58–70.CrossRefGoogle Scholar
  152. 152.
    Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2015;2(3):204–26.CrossRefGoogle Scholar
  153. 153.
    Palazzo C, Trapani G, Ponchel G, Trapani A, Vauthier C. Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly (isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm. 2017;117:315–23.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal. 2015;23(4):619–29.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Hussein-Al-Ali SH, et al. Preparation of chitosan nanoparticles as a drug delivery system for perindopril erbumine. Polym Compos. 2016; p. n/a-n/a.Google Scholar
  156. 156.
    Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Dev Ther. 2016;10:483–507.CrossRefGoogle Scholar
  157. 157.
    Yin L, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Zhu D, Cheng H, Li J, Zhang W, Shen Y, Chen S, et al. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C Mater Biol Appl. 2016;61:79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Szymanska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13(4):1819–46.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Choi C, Nam JP, Nah JW. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.CrossRefGoogle Scholar
  161. 161.
    Bisht S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5(1):3.CrossRefGoogle Scholar
  162. 162.
    Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. J Pharm. 2014;2014:10.Google Scholar
  163. 163.
    Sercombe L, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015:6(286).Google Scholar
  164. 164.
    Daraee H, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Goncalves C, et al. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int J Pharm. 2014;460(1-2):264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Ad Pharm Bull. 2017;7(1):3–9.CrossRefGoogle Scholar
  167. 167.
    Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. 2014;2014:869269.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S, et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials. 2010;31(25):6519–29.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Hu R, et al. A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. Int J Mol Med. 2018;41(1):195–201.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Hwang SR, Kim K. Nano-enabled delivery systems across the blood–brain barrier. Arch Pharm Res. 2014;37(1):24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016;68:982–94.CrossRefGoogle Scholar
  172. 172.
    Gastaldi L, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm. 2014;87(3):433–44.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):27–40.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–9.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80(5):781–9.CrossRefGoogle Scholar
  176. 176.
    Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm. 2017;526(1-2):425–42.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Sangsen Y, Sooksawate T, Likhitwitayawuid K, Sritularak B, Wiwattanapatapee R. A self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med. 2018;84(11):820–8.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7(6):2297–316.CrossRefGoogle Scholar
  180. 180.
    Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2006;24(3):506–15.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Ahmed AH, et al. Pomegranate extract modulates processing of amyloid-beta precursor protein in an aged Alzheimer’s disease animal model. Curr Alzheimer Res. 2014;11(9):834–43.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Essa MM, Subash S, Akbar M, al-Adawi S, Guillemin GJ. Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2015;10(3):e0120964.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Zhou J, Liu B. Alzheimer’s disease and prion protein. Intractable Rare Dis Res. 2013;2(2):35–44.PubMedPubMedCentralGoogle Scholar
  184. 184.
    McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–29.CrossRefGoogle Scholar
  185. 185.
    Ulep MG, Saraon SK, McLea S. Alzheimer disease. J Nurse Pract. 2018;14(3):129–35.CrossRefGoogle Scholar
  186. 186.
    Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.CrossRefGoogle Scholar
  187. 187.
    Saraiva C, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Zhang T-T, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci. 2016;4(2):219–29.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Masserini M. Nanoparticles for Brain Drug Delivery. ISRN Biochem. 2013;2013:18.CrossRefGoogle Scholar
  191. 191.
    Johnsen KB, et al. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. 2019;181:101665.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Ramalho MJ, et al. Factorial design as a tool for the optimization of PLGA nanoparticles for the co-delivery of temozolomide and O6-benzylguanine. 2019;11(8):401.Google Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  1. 1.LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations