Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”

  • Silvana AlfeiEmail author
  • Silvia Catena
  • Federica Turrini
Original Article


Gallic acid (GA) is a natural polyphenol with remarkable antioxidant power present in several vegetables and fruits. A normal feeding regime leads to a daily intake of GA which is reasonably regarded as “natural” and “safe” for humans. It owns strong potentials as alternative to traditional drugs to treat several diseases triggered by oxidative stress (OS), but poor gastrointestinal absorbability, pharmacokinetic drawbacks, and fast metabolism limit its clinical application. In this work, a fifth-generation polyester-based dendrimer was firstly prepared as a better absorbable carrier to protect and deliver GA. Then, by its peripheral esterification with GA units, a GA-enriched delivering system (GAD) with remarkable antioxidant power and high potential against diseases from OS was achieved. Scanning electron microscopy results and dynamic light scattering analysis revealed particles with an average size around 387 and 375 nm, respectively, and an extraordinarily spherical morphology. These properties, by determining a large particles surface area, typically favour higher systemic residence time and bio-efficiency. Z-potential of − 25 mV suggests satisfactory stability in solution with tendency to form megamers and low polydispersity index. GAD showed intrinsic antioxidant power, higher than GA by 4 times and like prodrugs, and it can carry contemporary several bioactive GA units versus cells. In physiological condition, the action of pig liver esterase (PLE), selected as a model of cells esterase, hydrolyses GAD to non-cytotoxic small molecules, thus setting free the bioactive GA units, for further antioxidant effects. Cytotoxicity studies performed on two cell lines demonstrated a high cell viability.

Graphical Abstract

Graphical Abstract


Gallic acid Biocompatible dendrimer particles Gallic acid delivery device Radical scavenging activity Pig liver esterase Spherical nanoparticles 



The authors are very thankful to Mr. Gagliardo Osvaldo for Elemental Analysis and Prof. Deirdre Kantz for language help.

As the first author, I affectionately dedicate this work to my dear parents and dear friend Rocco.

Funding information

This work has been supported by University of Genoa (Progetti di Ateneo).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13346_2019_681_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2.04 mb)


  1. 1.
    Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–57.CrossRefGoogle Scholar
  2. 2.
    de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA. Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. Wiley-Blackwell Hoboken: New Jersey; 2016.Google Scholar
  3. 3.
    Booth AN, Masri MS, Robbins DJ, Emerson OH, Jones FT, Deeds F. The metabolic fate of gallic acid and related compounds. J Biol Chem. 1959;234:3014–6.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Madsen HL, Bertelsen G. Spices as antioxidants. Trends Food Sci Technol. 1995;6:271–7.CrossRefGoogle Scholar
  5. 5.
    Nakatani N. Natural antioxidants from spices. In: Huang MT, Ho CT, Lee CY, editors. Phenolic compounds in food and their effects on health II. Antioxidants and cancer prevention. Washington, DC: ACS American Chemical Society; 1992. p. 72–86.CrossRefGoogle Scholar
  6. 6.
    Cholbi MR, Paya M, Alcaraz MJ. Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia. 1991;47:195–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Filipiak K, Hidalgo M, Silvan JM, Fabre B, Carbajo RJ, Pineda-Lucena A, et al. Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food Funct. 2014;5:381–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sakagami H, Satoh K. Prooxidant action of two antioxidants: ascorbic acid and gallic acid. Anticancer Res. 1997;17:221–4.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Inoue M, Suzuki R, Sakaguchi N, Li Z, Takeda T, Ogihara Y, et al. Selective induction of cell death in cancer cells by gallic acid. Biol Pharm Bull. 1995;18:1526–30.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bhattacharyya S, Ahammed SM, Saha BP, Mukherjee PK. The gallic acid phospholipid complex improved the anti oxidant potential of gallic acid by enhancing its bioavailability. AAPS Pharm Sci Technol. 2013;14:1025–33.CrossRefGoogle Scholar
  11. 11.
    Ferruzzi MG, Lobo JK, Janle EM, Whittaker N, Cooper B, Simon JE, et al. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimer’s Disease. Alzheimer Dis. 2009;18:113–24.CrossRefGoogle Scholar
  12. 12.
    Konishi Y, Hitomi Y, Yoshioka E. Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J Agric Food Chem. 2004;52:2527–32.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yasuda T, Inaba A, Ohmori M, Endo T, Kubo S, Ohsawa K. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical. J Nat Prod. 2000;63:1444–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Alves ACS, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity andantioxidant activity. Mater Sci Eng. 2016;60:126–34.CrossRefGoogle Scholar
  15. 15.
    Da Rocha LG, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, et al. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (London). 2015;10:1127–38.CrossRefGoogle Scholar
  16. 16.
    Nahak P, Karmakar G, Chettri P, Roy B, Guha P, Besra SE, et al. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. Langmuir. 2016;32:9816–25.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hu X, Liu G, Li Y, Wang X, Liu S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc. 2015;137:362–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, et al. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials. 2011;32:6595–605.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gao Y, Li Z, Xie X, Wang C, You J, Mo F, et al. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. Eur J Pharm Sci. 2015;70:55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6:139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xu J, Luo S, Shi W, Liu S. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 2006;22:989–97.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Luo S, Xu J, Zhu Z, Wu C, Liu S. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J Phys Chem. 2006;110:9132–9.CrossRefGoogle Scholar
  23. 23.
    Xu H, Xu J, Jiang X, Zhu Z, Rao J, Yin J, et al. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution. Chem Mater. 2007;19:2489–95.CrossRefGoogle Scholar
  24. 24.
    Luo S, Hu X, Ling C, Liu X, Chen S, Han M. Multiarm star-like unimolecular micelles with a dendritic core and a dual thermosensitive shell. Polym Int. 2011;60:717–24.CrossRefGoogle Scholar
  25. 25.
    Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39:268–307.CrossRefGoogle Scholar
  26. 26.
    Satija J, Sai VVR, Mukherji S. Dendrimers in biosensors: concept and applications. J Mater Chem. 2011;21:14367–86.CrossRefGoogle Scholar
  27. 27.
    Caminade AM. Dendrimers as biological sersors. In: Caminade AM, Turrin CO, Laurent R, Ouali A, Delavaux-Nicot B, editors. Dendrimers: towards catalytic, material and biomedical uses. Chichester: John Wiley and Sons Ltd Inc.; 2011. p. 375–92.Google Scholar
  28. 28.
    Kim J-H, Park K, Nam HY, Lee S, Kim K, Kwon IC. Polymers for bioimaging. Prog Polym Sci. 2007;32:1031–53.CrossRefGoogle Scholar
  29. 29.
    Wang Z, Niu G, Chen X. Polymeric materials for theranostic applications. Pharm Res. 2014;31:1358–76.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee CC, MacKay JA, Frechet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hourani R, Kakkar A. Advances in the elegance of chemistry in designing dendrimers. Macromol Rapid Commun. 2010;31:947–74.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    De Jesus OLP, Ihre HR, Gagne L, Frechet JMJ, Szoka FC. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem. 2002;13:453–61.CrossRefGoogle Scholar
  33. 33.
    Alfei S, Taptue GB, Catena S, Bisio A. Synthesis of water-soluble, polyester-based dendrimer prodrugs for exploiting therapeutic properties of two triterpenoid acids. Chin J Polym Sci. 2018;36:999–1010.CrossRefGoogle Scholar
  34. 34.
    Alfei S, Catena S, Ponassi M, Rosano C, Zoppi V, Spallarossa A. Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. Eur J Pharm Sci. 2018;124:153–64.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Alfei S, Turrini F, Catena S, Zunin P, Parodi B, Zuccari G, et al. Pectin microdispersion vs non-polyamidoamine dendrimer nanodispersions: two biocompatible approaches to increase Ellagic Acid water solubility and allow its more ways therapeutic administration. New J Chem. 2019;43:2438–48.CrossRefGoogle Scholar
  36. 36.
    Kaminskas LM, McLeod VM, Kelly BD, Cullinane C, Sberna G, Williamson M, et al. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm. 2012;9:422–32.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Oliveira JM, Salgadoc AJ, Sousa N, Mano JF, Reis RL. Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—a review. Prog Polym Sci. 2010;35:1163–94.CrossRefGoogle Scholar
  38. 38.
    Wang W, Chen L-J, Wang X-Q, Sun B, Li X, Zhang Y, et al. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branche. PNAS. 2015;112:5597–601.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mohammadifar E, Kharat AN, Adeli M. Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems. J Mater Chem B. 2015;3:3896–921.CrossRefGoogle Scholar
  40. 40.
    Xu X, Li J, Han S, Tao C, Fang L, Sun Y, et al. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration. Eur J Pharm Sci. 2016;88:178–90.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let’s meet the challenge. Int J Pharm. 2010;394:122–42.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release. 2011;156:195–202.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wen Y, Guo Z, Du Z, Fang R, Wu H, Zeng X, et al. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33:8111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang F, Wang Y, Wang H, Shao N, Chen Y, Cheng Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials. 2014;35:9187–98.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Liu X, Liu C, Zhou J, Chen C, Qu F, Rossi JJ, et al. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale. 2015;7:3867–75.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ihre HR, De Jesus POL, Szoka FC Jr, Frechet JMJ. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem. 2002;13:443–52.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Quadir MA, Haag R. Biofunctional nanosystems based on dendritic polymers. J Controlled Release. 2012;161:484–95.CrossRefGoogle Scholar
  48. 48.
    Zhou Z, Tang J, Sun Q, Murdoch WJ, Shen Y. A multifunctional PEG–PLL drug conjugate forming redox-responsive nanoparticles for intracellular drug delivery. J Mater Chem B. 2015;3:7594–603.CrossRefGoogle Scholar
  49. 49.
    Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10:35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ma X, Zhou Z, Jin E, Sun Q, Zhang B, Tang J, et al. Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules. 2013;46:37–42.CrossRefGoogle Scholar
  51. 51.
    Ma X, Tang J, Shen Y, Fan M, Tang H, Radosz M. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J Am Chem Soc. 2009;131:14795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kaminskas LM, Boyd BJ, Porter CJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (London). 2011;6:1063–84.CrossRefGoogle Scholar
  53. 53.
    Ihre H, Hult A, Fréchet JMJ, Gitsov I. Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecules. 1998;31:4061–8.CrossRefGoogle Scholar
  54. 54.
    Alfei S, Castellaro S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol Res. 2017;25:1172–86.CrossRefGoogle Scholar
  55. 55.
    Alfei S, Castellaro S, Taptue GB. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org Commun. 2017;10:144–77.CrossRefGoogle Scholar
  56. 56.
    Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol. 1995;28:25–30.Google Scholar
  57. 57.
    Griffin CC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5:249–56.Google Scholar
  58. 58.
    Carlmark A, Malstrӧm E, Malkoch M. Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chem Soc Rev. 2013;42:5858–79.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Malik G, Natangelo A, Charris J, Pouységu L, Manfredini S, Cavagnat D, et al. Synthetic studies toward C-glucosidic ellagitannins: a biomimetic total synthesis of 5-O-desgalloylepipunicacortein A. Chem Eur J. 2012;18:9063–74.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ma H, Wang L, Niesen DB, Cai A, Cho BP, Tan W, et al. Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase. RSC Adv. 2015;5:107904–15.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Stadler PA. Eine einfache Veresterungsmethode im Eintopf-Verfahren. HCA. 1978;61:1675–81.CrossRefGoogle Scholar
  62. 62.
    Marson CM. Reactions of carbonyl compounds with (monohalo) methyleniminium salts (vilsmeier reagents). Tetrahedron. 1992;48:3659–726.CrossRefGoogle Scholar
  63. 63.
    Clayden J. Organolithiums: selectivity for synthesis. Oxford: Pergamon; 2002.Google Scholar
  64. 64.
    Ansell MF. Preparation of acyl halides. In: Patai S, editor. The chemistry of acyl halides. Bristol: John Wiley and Sons; 1972. p. 35–64.CrossRefGoogle Scholar
  65. 65.
    Khan AT, Mondal EA. Highly efficient and useful synthetic protocol for the cleavage of tert-butyldimethylsilyl(TBS) ethers using a catalytic amount of acetyl chloride in dry methanol. Synlett. 2003;5:694–8.CrossRefGoogle Scholar
  66. 66.
    Alfei S, Catena S. Synthesis and characterization of versatile amphiphilic dendrimers peripherally decorated with positive charged amino acids. Polym Int. 2018;67:1572–84.CrossRefGoogle Scholar
  67. 67.
    Alfei S, Catena S. Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polym Adv Technol. 2018;29:2735–49.CrossRefGoogle Scholar
  68. 68.
    Falcão L, Araújo MEM. Tannins characterisation in new and historic vegetable tanned leathers fibres by spot tests. J Cult Herit. 2011;12:149–56.CrossRefGoogle Scholar
  69. 69.
    Chaudhari HS, Popat RR, Adhao VS, Shrikhande VN. Dendrimers: novel carrier for drug delivery. J App Pharm Res. 2016;4:1–19.Google Scholar
  70. 70.
    Manjappa K, Narayanaswamy J. Thiol−disulfide interchange mediated reversible dendritic megamer formation and dissociation. Macromolecules. 2009;42:7353–9.CrossRefGoogle Scholar
  71. 71.
    Joseph E, Singhvi G. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy. Amsterdam: Elsevier; 2019. p. 91–111.CrossRefGoogle Scholar
  72. 72.
    Lu GW, Gao P. Emulsions and microemulsions for topical and transdermal drug delivery. In: Kulkarni VS, editor. Handbook of non-invasive drug delivery systems. Amsterdam: Elsevier; 2010. p. 59–94.CrossRefGoogle Scholar
  73. 73.
    Shao X-R, Wei X-Q, Song Z, Hao L-Y, Cai X-X, Zhang Z-R, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48:465–74.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gawron-Gzella A, Dudek-Makuch M, Matławska I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol Cracov Ser Bot. 2012;54:32–8.Google Scholar
  75. 75.
    Labieniec M, Gabryelak T. Effects of tannins on Chinese hamster cell line B14. Mutat Res Genet Toxicol Environ Mutagen. 2003;539:127–35.CrossRefGoogle Scholar
  76. 76.
    Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH, et al. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharm. 2012;9:382–93.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  1. 1.Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e AlimentariUniversità di GenovaGenovaItaly

Personalised recommendations