Advertisement

Basics to advances in nanotherapy of colorectal cancer

  • Ankita Tiwari
  • Shivani Saraf
  • Ankit Jain
  • Pritish K. Panda
  • Amit Verma
  • Sanjay K. JainEmail author
Review Article
  • 59 Downloads

Abstract

Colorectal cancer (CRC) is the third most common cancer existing across the globe. It begins with the formation of polyps leading to the development of metastasis, especially in advanced stage patients, who necessitate intensive chemotherapy that usually results in a poor response and high morbidity owing to multidrug resistance and severe untoward effects to the non-cancerous cells. Advancements in the targeted drug delivery permit the targeting of tumor cells without affecting the non-tumor cells. Various nanocarriers such as liposomes, polymeric nanoparticles, carbon nanotubes, micelles, and nanogels, etc. are being developed and explored for effective delivery of cytotoxic drugs to the target site thereby enhancing the drug distribution and bioavailability, simultaneously subduing the side effects. Moreover, immunotherapy for CRC is being explored for last few decades. Few clinical trials have even potentially benefited patients suffering from CRC, still immunotherapy persists merely an experimental alternative. Assessment of the ongoing and completed trials is to be warranted for effective treatment of CRC. Scientists are paying efforts to develop novel carrier systems that may enhance the targeting potential of low therapeutic index chemo- and immune-therapeutics. Several preclinical studies have revealed the superior efficacy of nanotherapy in CRC as compared to conventional approaches. Clinical trials are being recruited to ascertain the safety and efficacy of CRC therapies. The present review discourses in a nutshell the molecular interventions including the genetics, signaling pathways involved in CRC, and advances in various strategies explored for the treatment of CRC with a special emphasis on nanocarriers based drug targeting.

Keywords

Colorectal cancer Nanocarriers Molecular pathogenesis Immunotherapy Drug delivery 

Notes

Acknowledgments

Ankita Tiwari (SRF), Pritish Kumar Panda (SRF), and Amit Verma (RA) are highly obliged to Indian Council of Medical Research (ICMR, New Delhi) for rendering funding assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Irving M, Catchpole B. ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. BMJ. 1992;304(6834):1106.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ma H, Brosens LA, Offerhaus GJA, Giardiello FM, de Leng WW, Montgomery EA. Pathology and genetics of hereditary colorectal cancer. Pathology. 2018;50:49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fornasarig M, Magris R, De Re V, Bidoli E, Canzonieri V, Maiero S et al. Molecular and pathological features of gastric cancer in Lynch syndrome and familial adenomatous polyposis. Int J Mol Sci. 2018;19(6). doi: https://doi.org/10.3390/ijms19061682.PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel targeting approaches and signaling pathways of colorectal cancer: an insight. World J Gastroenterol. 2018;24(39):4428.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dhir K, Kahlon H, Kaur S. Recent approaches for colon targeted drug delivery system. Int J Pharm Chem Biol Sci. 2013;3(2):360–71.Google Scholar
  7. 7.
    Gulbake A, Jain A, Jain A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World J Gastroenterol. 2016;22(2):582–99.  https://doi.org/10.3748/wjg.v22.i2.582.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mishra B, Chaurasia S. Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Ther Deliv. 2017;8(1):29–47.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tiemersma EW, Kampman E, de Mesquita HBB, Bunschoten A, van Schothorst EM, Kok FJ, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control. 2002;13(4):383–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Kune GA, Vitetta L. Alcohol consumption and the etiology of colorectal cancer: a review of the scientific evidence from 1957 to 1991. Nutr Cancer. 1992;18(2):97–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Jain A, Tiwari A, Verma A, Jain SK. Vitamins for cancer prevention and treatment: an insight. Curr Mol Med. 2017;17(5):321–40.  https://doi.org/10.2174/1566524018666171205113329.CrossRefPubMedGoogle Scholar
  13. 13.
    Gertig DM, Hunter DJ, editors. Genes and environment in the etiology of colorectal cancer. Seminars in Cancer Biology; 1998 Jan 1 (Vol. 8, No. 4, pp. 285–298). Academic Press.Google Scholar
  14. 14.
    Cappell MS. From colonic polyps to colon cancer: pathophysiology, clinical presentation, and diagnosis. Clin Lab Med. 2005;25(1):135–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Treanor D, Quirke P. Pathology of colorectal cancer. Clin Oncol. 2007;19(10):769–76.CrossRefGoogle Scholar
  16. 16.
    Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res. 2017;370(1):29–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci. 1997;94(7):3336–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Jia W, Kidoya H, Yamakawa D, Naito H, Takakura N. Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol. 2013;182(5):1821–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Tiwari A, Jain A, Verma A, Jain SK. Exploitable signaling pathways for the treatment of inflammatory bowel disease. Curr Signal Transduct Ther. 2017;12.Aug 1;12(2):76–84.CrossRefGoogle Scholar
  20. 20.
    Kristjansson SR, Nesbakken A, Jordhøy MS, Skovlund E, Audisio RA, Johannessen H-O, et al. Comprehensive geriatric assessment can predict complications in elderly patients after elective surgery for colorectal cancer: a prospective observational cohort study. Crit Rev Oncol Hematol. 2010;76(3):208–17.CrossRefGoogle Scholar
  21. 21.
    Marshall JL. Managing potentially resectable metastatic colon cancer. Gastrointest Cancer Res. 2008;2(4 Suppl 2):S23.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tchelebi L, Sharma NK, editors. Selective internal radiation therapy in the multidisciplinary management of liver metastases from colorectal carcinoma. Seminars in nuclear medicine; Volume 49, Issue 3, May 2019, Pages 182–188: Elsevier.Google Scholar
  23. 23.
    Smits ML, Elschot M, Sze DY, Kao YH, Nijsen JF, Iagaru AH, et al. Radioembolization dosimetry: the road ahead. Cardiovasc Intervent Radiol. 2015;38(2):261–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Fiorentini G, Aliberti C, Mulazzani L, Coschiera P, Catalano V, Rossi D, et al. Chemoembolization in colorectal liver metastases: the rebirth. Anticancer Res. 2014;34(2):575–84.PubMedGoogle Scholar
  25. 25.
    Guo Z, Yu H, Liu C, Si T, Yang X, Zhang W, et al. Advances in endovascular therapy to treat primary hepatocellular carcinoma. Drug Discov Ther. 2015;9(5):342–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Miraglia R, Pietrosi G, Maruzzelli L, Petridis I, Caruso S, Marrone G, et al. Efficacy of transcatheter embolization/chemoembolization (TAE/TACE) for the treatment of single hepatocellular carcinoma. World J Gastroenterol: WJG. 2007;13(21):2952.PubMedCrossRefGoogle Scholar
  27. 27.
    Rammohan A, Sathyanesan J, Ramaswami S, Lakshmanan A, Senthil-Kumar P, Srinivasan UP, et al. Embolization of liver tumors: past, present and future. World J Radiol. 2012;4(9):405.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ou S, Xu R, Li K, Chen Y, Kong Y, Liu H, et al. Radiofrequency ablation with systemic chemotherapy in the treatment of colorectal cancer liver metastasis: a 10-year single-center study. Cancer Manag Res. 2018;10:5227.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20(9):1121–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4:198.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Braat MN, van Erpecum KJ, Zonnenberg BA, van den Bosch MA, Lam MG. Radioembolization-induced liver disease: a systematic review. Eur J Gastroenterol Hepatol. 2017;29(2):144–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Jain A, Jain SK. Stimuli-responsive Smart liposomes in cancer targeting. Curr Drug Targets. 2018;19(3):259–70.  https://doi.org/10.2174/1389450117666160208144143.CrossRefPubMedGoogle Scholar
  33. 33.
    Jain A, Kumari R, Tiwari A, Verma A, Tripathi A, Shrivastava A, et al. Nanocarrier Based advances in drug delivery to tumor: an overview. Curr Drug Targets. 2018;19(13):1498–518.  https://doi.org/10.2174/1389450119666180131105822.CrossRefPubMedGoogle Scholar
  34. 34.
    Lu Y-J, Lin P-Y, Huang P-H, Kuo C-Y, Shalumon K, Chen M-Y, et al. Magnetic graphene oxide for dual targeted delivery of doxorubicin and photothermal therapy. Nanomaterials. 2018;8(4):193.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Matsumura Y. Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol. 2008;38(12):793–802.  https://doi.org/10.1093/jjco/hyn116.CrossRefPubMedGoogle Scholar
  36. 36.
    Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw J, Chen B, et al. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86(3):232–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Song W, Shen L, Wang Y, Liu Q, Goodwin TJ, Li J, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun. 2018;9(1):2237–11.  https://doi.org/10.1038/s41467-018-04605-x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Xiang B, Snook AE, Magee MS, Waldman SA. Colorectal cancer immunotherapy. Discov Med. 2013;15(84):301.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Dosset M, Vargas TR, Lagrange A, Boidot R, Végran F, Roussey A, et al. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 2018;7(6):e1433981.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Rioux CR, Clapper ML, Cooper HS, Michaud J, St Amant N, Koohsari H, et al. Self-antigen MASH2 combined with the AS15 immunostimulant induces tumor protection in colorectal cancer mouse models. PLoS One. 2019;14(1):e0210261.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, et al. Vaccines for colorectal cancer: an update. J Cell Biochem. 2019;120(6):8815–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Qian DC, Xiao X, Byun J, Suriawinata AA, Her SC, Amos CI, et al. PI3K/Akt/mTOR signaling and plasma membrane proteins are implicated in responsiveness to adjuvant dendritic cell vaccination for metastatic colorectal cancer. Clin Cancer Res. 2017;23(2):399–406.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang Q, Xie C, Wang D, Yang Y, Liu H, Liu K, et al. Improved antitumor efficacy of combined vaccine based on the induced HUVECs and DC-CT26 against colorectal carcinoma. Cells. 2019;8(5):494.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5(1):19.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sabaawy HE, Farley T, Ahmed T, Feldman E, Abraham NG. Synergetic effects of retrovirus IFN-alpha gene transfer and 5-FU on apoptosis of colon cancer cells. Acta Haematol. 1999;101(2):82–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Durai R, Yang SY, Seifalian AM, Winslet MC. Principles and applications of gene therapy in colon cancer. J Gastrointestin Liver Dis. 2008;17(1):59.PubMedGoogle Scholar
  50. 50.
    Cho KR, Vogelstein B. Genetic alterations in the adenoma–carcinoma sequence. Cancer. 1992;70(S4):1727–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Takami K, Yana I, Kurahashi H, Nishisho I. Multistep carcinogenesis in colorectal cancers. Southeast Asian J Trop MedPublic Health. 1995;26:190–6.Google Scholar
  52. 52.
    Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2000;51(1):289–98.PubMedCrossRefGoogle Scholar
  53. 53.
    Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101–14. e5.PubMedCrossRefGoogle Scholar
  54. 54.
    West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15(10):615.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhou K, Rao J, Zhou Z-H, Yao X-H, Wu F, Yang J, et al. RAC1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3. Lab Investig. 2018.  https://doi.org/10.1038/s41374-018-0071-2.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang K, Grivennikov SI, Karin M. Implications of anti-cytokine therapy in colorectal cancer and autoimmune diseases. Ann Rheum Dis. 2012.  https://doi.org/10.1136/annrheumdis-2012-202201.PubMedCrossRefGoogle Scholar
  57. 57.
    Chung SS, Wu Y, Okobi Q, Adekoya D, Atefi M, Clarke O, et al. Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediat Inflamm. 2017;2017:5958429.CrossRefGoogle Scholar
  58. 58.
    Prajapati SK, Jain A, Shrivastava C, Jain AK. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int J Biol Macromol. 2019;123:691–703.  https://doi.org/10.1016/j.ijbiomac.2018.11.116.CrossRefPubMedGoogle Scholar
  59. 59.
    Nguyen CT, Webb RI, Lambert LK, Strounina E, Lee EC, Parat M-O, et al. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl Mater Interfaces. 2017;9(11):9470–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, et al. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release. 2016;229:10–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Negi LM, Jaggi M, Joshi V, Ronodip K, Talegaonkar S. Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int J Biol Macromol. 2015;73:222–35.  https://doi.org/10.1016/j.ijbiomac.2014.11.026.CrossRefPubMedGoogle Scholar
  62. 62.
    Shia J, Klimstra DS, Nitzkorski JR, Low PS, Gonen M, Landmann R, et al. Immunohistochemical expression of folate receptor α in colorectal carcinoma: patterns and biological significance. Hum Pathol. 2008;39(4):498–505.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, et al. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomedicine. 2012;7:151–62.  https://doi.org/10.2147/ijn.s27639.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim S-H, Kim J-K, Lim S-J, Park J-S, Lee M-K, Kim C-K. Folate-tethered emulsion for the target delivery of retinoids to cancer cells. Eur J Pharm Biopharm. 2008;68(3):618–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Xiong S, Yu B, Wu J, Li H, Lee RJ. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed Pharmacother. 2011;65(1):2–8.  https://doi.org/10.1016/j.biopha.2010.10.003.CrossRefPubMedGoogle Scholar
  66. 66.
    Lehr C-M. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release. 2000;65(1-2):19–29.PubMedCrossRefGoogle Scholar
  67. 67.
    Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev. 2004;56(4):491–509.  https://doi.org/10.1016/j.addr.2003.10.017.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang C, Ho PC, Lim LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm. 2010;400(1-2):201–10.  https://doi.org/10.1016/j.ijpharm.2010.08.023.CrossRefPubMedGoogle Scholar
  69. 69.
    Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579.PubMedCrossRefGoogle Scholar
  70. 70.
    Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3):164–70.  https://doi.org/10.1016/j.jconrel.2008.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dong J, Saunders D, Silasi-Mansat R, Yu L, Zhu H, Lupu F et al. Therapeutic efficacy of a synthetic epsin mimetic peptide in glioma tumor model: uncovering multiple mechanisms beyond the VEGF-associated tumor angiogenesis. J Neurooncol. 2018 May 1;138(1):17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.  https://doi.org/10.1016/j.jconrel.2010.08.027.CrossRefGoogle Scholar
  75. 75.
    Jain A, Jain SK. Colon targeted liposomal systems (CTLS): theranostic potential. Curr Mol Med. 2015;15(7):621–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Jain A, Jain S. Ligand-mediated drug-targeted liposomes. Liposomal delivery systems: advances and challenges. Future Medicine: UK; 2016.  https://doi.org/10.4155/FSEB2013.14.251.CrossRefGoogle Scholar
  77. 77.
    Sharma VK, Jain A, Soni V. Nano-aggregates: emerging delivery tools for tumor therapy. Crit Rev Ther Drug Carrier Syst. 2013;30(6):535–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.  https://doi.org/10.1016/j.chemphyslip.2016.10.005.CrossRefGoogle Scholar
  79. 79.
    Gupta A, Ahmad A, Singh H, Kaur S, Ansari MM, Jayamurugan G, et al. Nanocarrier Composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for synthetic lethal therapy of BLM-defective colorectal cancer cells. Biomacromolecules. 2018;19(3):803–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Jain A, Jain SK. P-gp inhibitors: a potential tool to overcome drug resistance in cancer chemotherapy. Nanomed Tissue Eng: State Art Recent Trends 2016 Mar 30;247.Google Scholar
  81. 81.
    Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Mol Med. 2018.  https://doi.org/10.2174/1566524018666180416101522.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jain A, Jain SK. Chapter 9: Application potential of engineered liposomes in tumor targeting. In: Grumezescu A, editor. Multifunctional systems for combined delivery, biosensing and diagnostics. Elsevier - Health Sciences Division; 2017 Jan 1 (pp. 171–191). Elsevier.Google Scholar
  83. 83.
    Jain A, Jain SK. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev Ind Pharm. 2016;42(1):136–49.  https://doi.org/10.3109/03639045.2015.1036066.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kang X-j, Wang H-y, Peng H-g, Chen B-f, Zhang W-y, Wu A-h, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38(6):885.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Angali KA, et al. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci. 2018;114:166–74.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Xiong M, Lei Q, You X, Gao T, Song X, Xia Y, et al. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J Microencapsul. 2017;34(6):513–21.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Song Z, Lin Y, Xia Zhang CF, Lu Y, Gao Y, Dong C. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tiwari A, Verma A, Panda P, Saraf S, Jain A, Jain SK. Stimuli-responsive Polysaccharides for colon targeted drug delivery. Stimuli responsive polymeric nanocarriers for drug delivery applications. 2019 Jan 1 (pp. 547–566). Woodhead Publishing.Google Scholar
  89. 89.
    Verma A, Jain A, Tiwari A, Jain SK. Emulgels: application potential in drug delivery. Functional biopolymers. 2018 (pp. 343–371). Springer, Cham.Google Scholar
  90. 90.
    Seeli DS, Prabaharan M. Guar gum oleate-graft-poly (methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr Polym. 2017;158:51–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Hosseinifar T, Sheybani S, Abdouss M, Hassani Najafabadi SA, Shafiee Ardestani M. Pressure responsive nanogel base on alginate-cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J Biomed Mater Res A. 2018;106(2):349–59.PubMedCrossRefGoogle Scholar
  92. 92.
    Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double-network-structured graphene oxide-containing nanogels as photothermal agents for the treatment of colorectal cancer. Biomacromolecules. 2017;18(3):1010–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–73.  https://doi.org/10.3390/ijms15045852.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat. 2009;41(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Tummala S, Gowthamarajan K, Satish Kumar M, Wadhwani A. Oxaliplatin immuno hybrid nanoparticles for active targeting: an approach for enhanced apoptotic activity and drug delivery to colorectal tumors. Drug Deliv. 2016;23(5):1773–87.PubMedCrossRefGoogle Scholar
  96. 96.
    Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol. 2017:1–12.Google Scholar
  97. 97.
    Brody LP, Sahuri-Arisoylu M, Parkinson JR, Parkes HG, So PW, Hajji N, et al. Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects. Int J Nanomedicine. 2017;12:6677.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wang Y, Li P, Chen L, Gao W, Zeng F, Kong LX. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv. 2015;22(2):191–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res. 2011;346(6):801–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang Y, Li J, Lang M, Tang X, Li L, Shen X. Folate-functionalized nanoparticles for controlled 5-fluorouracil delivery. J Colloid Interface Sci. 2011;354(1):202–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Anitha A, Deepa N, Chennazhi K, Lakshmanan V-K, Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta (BBA)-Gen Subj. 2014;1840(9):2730–43.CrossRefGoogle Scholar
  102. 102.
    Dutta RK, Sahu S. Development of a novel probe sonication assisted enhanced loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted drug delivery system. Eur J Pharm Biopharm. 2012;82(1):58–65.  https://doi.org/10.1016/j.ejpb.2012.05.007.CrossRefPubMedGoogle Scholar
  103. 103.
    Arafa K, Shamma RN, El-Gazayerly ON, El-Sherbiny IM. Facile development, characterization, and optimization of new metformin-loaded nanocarrier system for efficient colon cancer adjunct therapy. Drug Dev Ind Pharm. 2018;44(7):1158–70.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Farooq U, Malviya R, Sharma PK. Advancement in microsphere preparation using natural polymers and recent patents. Recent Pat Drug Deliv Formul. 2014;8(2):111–25.PubMedCrossRefGoogle Scholar
  105. 105.
    Madan J, Gundala SR, Baruah B, Nagaraju M, Yates C, Turner T, et al. Cyclodextrin complexes of reduced bromonoscapine in guar gum microspheres enhance colonic drug delivery. Mol Pharm. 2014;11(12):4339–49.  https://doi.org/10.1021/mp500408n.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Ahmad MZ, Akhter S, Ahmad I, Singh A, Anwar M, Shamim M, et al. In vitro and in vivo evaluation of Assam Bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin Drug Deliv. 2012;9(2):141–9.  https://doi.org/10.1517/17425247.2012.633507.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mahammed N, Gowda D, Deshpande RD, Thirumaleshwar S. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier. Arch Pharm Res. 2015;38(1):42–51.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pereira AG, Fajardo AR, Nocchi S, Nakamura CV, Rubira AF, Muniz EC. Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells. Carbohydr Polym. 2013;98(1):711–20.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Fan R, Wang Y, Han B, Luo Y, Zhou L, Peng X, et al. Docetaxel load biodegradable porous microspheres for the treatment of colorectal peritoneal carcinomatosis. Int J Biol Macromol. 2014;69:100–7.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Zhao H, Wu F, Cai Y, Chen Y, Wei L, Liu Z, et al. Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA–PLA core/shell microspheres. Int J Pharm. 2013;450(1-2):235–40.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Croy S, Kwon G. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–84.PubMedCrossRefGoogle Scholar
  112. 112.
    Jain SK, Tiwari A, Jain A, Verma A, Saraf S, Panda PK et al. Application potential of polymeric nanoconstructs for colon-specific drug delivery. Multifunctional nanocarriers for contemporary healthcare applications. IGI Global; 2018. p. 22–49.Google Scholar
  113. 113.
    Valerii MC, Benaglia M, Caggiano C, Papi A, Strillacci A, Lazzarini G, et al. Drug delivery by polymeric micelles: an in vitro and in vivo study to deliver lipophilic substances to colonocytes and selectively target inflamed colon. Nanomed Nanotechnol Biol Med. 2013;9(5):675–85.CrossRefGoogle Scholar
  114. 114.
    Raveendran R, Bhuvaneshwar G, Sharma CP. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J Biomater Appl. 2013;27(7):811–27.  https://doi.org/10.1177/0885328211427473.CrossRefPubMedGoogle Scholar
  115. 115.
    Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, et al. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine. 2015;10:2051.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wu H, Cabral H, Toh K, Mi P, Chen Y-C, Matsumoto Y, et al. Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation. J Control Release. 2014;189:1–10.PubMedCrossRefGoogle Scholar
  117. 117.
    Ueno T, Endo K, Hori K, Ozaki N, Tsuji A, Kondo S, et al. Assessment of antitumor activity and acute peripheral neuropathy of 1, 2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int J Nanomedicine. 2014;9:3005.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Feng S-T, Li J, Luo Y, Yin T, Cai H, Wang Y, et al. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One. 2014;9(6):e100732.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv. 2014;2014.Google Scholar
  120. 120.
    Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M et al. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. 2008.Google Scholar
  121. 121.
    Lee Y, Geckeler KE. Cellular Interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells. Macromol Biosci. 2012;12(8):1060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Wu L, Man C, Wang H, Lu X, Ma Q, Cai Y, et al. PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharm Res. 2013;30(2):412–23.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Zhou M, Peng Z, Liao S, Li P, Li S. Design of microencapsulated carbon nanotube-based microspheres and its application in colon targeted drug delivery. Drug Deliv. 2014;21(2):101–9.  https://doi.org/10.3109/10717544.2013.834413.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH IV. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm. 2009;6(4):1092–9.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Zakaria AB, Picaud F, Rattier T, Pudlo M, Saviot L. Chassagnon Rm et al. Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing. Nano Lett. 2015;15(2):891–5.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Hosseinzadeh H, Atyabi F, Varnamkhasti BS, Hosseinzadeh R, Ostad SN, Ghahremani MH, et al. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells. Int J Pharm. 2017;526(1-2):339–52.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Hou X, Yang C, Zhang L, Hu T, Sun D, Cao H, et al. Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials. 2017;124:195–210.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Šmejkalová D, Nešporová K, Hermannová M, Huerta-Angeles G, Čožíková D, Vištejnová L, et al. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int J Pharm. 2014;466(1):147–55.PubMedCrossRefGoogle Scholar
  129. 129.
    Li W, Liu D, Zhang H, Correia A, Makila E, Salonen J, et al. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater. 2017;48:238–46.  https://doi.org/10.1016/j.actbio.2016.10.042.CrossRefPubMedGoogle Scholar
  130. 130.
    Leelakanok N, Geary SM, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly (lactide co-glycolide) pellets. J Pharm Sci. 2018;107(2):690–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Zheng S, Han J, Le VH, Park J-O, Park S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf B: Biointerfaces. 2017;154:104–14.PubMedCrossRefGoogle Scholar
  132. 132.
    Lei X, Li K, Liu Y, Wang ZY, Ruan BJ, Wang L, et al. Co-delivery nanocarriers targeting folate receptor and encapsulating 2-deoxyglucose and α-tocopheryl succinate enhance anti-tumor effect in vivo. Int J Nanomedicine. 2017;12:5701–15.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nho TDT, Ly HT, Vo TS, Nguyen HD, Phung TTH, Zou A, et al. Enhanced anticancer efficacy and tumor targeting through folate-PEG modified nanoliposome loaded with 5-fluorouracil. Adv Nat Sci Nanosci Nanotechnol. 2017;8(1):015008.CrossRefGoogle Scholar
  134. 134.
    Lima SAC, Gaspar A, Reis S, Durães L. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Mater Sci Eng C. 2017;75:1420–6.CrossRefGoogle Scholar
  135. 135.
    Říhová B, Jelinkova M, Strohalm J, Št'astný M, Hovorka O, Plocova D, et al. Antiproliferative effect of a lectin-and anti-Thy-1.2 antibody-targeted HPMA copolymer-bound doxorubicin on primary and metastatic human colorectal carcinoma and on human colorectal carcinoma transfected with the mouse Thy-1.2 gene. Bioconjug Chem. 2000;11(5):664–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.PubMedCrossRefGoogle Scholar
  137. 137.
    Lee S-Y, Yang C-Y, Peng C-L, Wei M-F, Chen K-C, Yao C-J, et al. A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials. 2016;86:92–105.PubMedCrossRefGoogle Scholar
  138. 138.
    Subbiah V, Khawaja MR, Hong DS, Amini B, Yungfang J, Liu H et al. First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients. JCI insight. April 20, 2017;2(8).Google Scholar
  139. 139.
    Varshosaz J, Riahi S, Ghassami E, Jahanian-Najafabadi A. Transferrin-targeted poly (butylene adipate)/terephthalate nanoparticles for targeted delivery of 5-fluorouracil in HT29 colorectal cancer cell line. J Bioact Compat Polym. 2017;32(5):503–27.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  1. 1.Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical SciencesDr. Harisingh Gour Central UniversitySagarIndia
  2. 2.Institute of Pharmaceutical ResearchGLA UniversityMathuraIndia

Personalised recommendations