Advertisement

Lipid nanoparticles for amphotericin delivery in the treatment of American tegumentary leishmaniasis

  • Regina Maia de Souza
  • Raul Cavalcante MaranhãoEmail author
  • Elaine Rufo Tavares
  • Fabíola Branco Filippin-Monteiro
  • Antônio Carlos Nicodemo
  • Aleksandra Tiemi Morikawa
  • Edite Hatsumi Yamashiro Kanashiro
  • Valdir Sabbaga Amato
Original Article
  • 38 Downloads

Abstract

Leishmaniasis occurs in the five continents and represents a serious public health challenge, but is still a neglected disease, and the current pharmacological weaponry is far from satisfactory. Triglyceride-rich nanoparticles mimicking chylomicrons (TGNP) behave metabolically like native chylomicrons when injected into the bloodstream. Previously we have shown that TGNP as vehicle to amphothericin B (AB) for treatment of fungi infection showed reduced renal toxicity and lower animal death rates compared to conventional AB. The aim of the current study was to test the tolerability and effectiveness of the TGNP-AB preparation in a murine model of Leishmania amazonensis infection. The in vitro assays determined the cytotoxicity of TGNP-AB, AB, and TGNP in macrophages and promastigote forms and the leishmanicidal activity in infected macrophages. The in vivo toxicity tests were performed in healthy mice with increasing doses of TGPN-AB and AB. Then, animals were treated with 2.5 mg/kg/day of AB, 17.5 mg/kg/day of TGNP-AB, or TGNP three times a week for 4 weeks. TGNP-AB formulation was less cytotoxic for macrophages than AB. TGNP-AB was more effective than AB against the promastigotes forms of the parasite and more effective in reducing the number of infected macrophages and the number of amastigotes forms per cell. TGNP-AB-treated animals showed lower hepatotoxicity. In addition, TGNP-AB group showed a marked reduction in lesion size on the paws and parasitic load. The TGNP-AB preparation attained excellent leishmanicidal activity with remarkable lower drug toxicity at very high doses that, due to the toxicity-buffering properties of the nanocarrier, become fully tolerable.

Keywords

Leishmaniasis treatment Lipid nanoparticles Amphotericin Cholesterol Nanoemulsions 

Notes

Funding information

This work was supported by National Council for Scientific and Technological Development (CNPq, Brazil-479291/2012-8), the São Paulo Research Foundation (FAPESP, Brazil-2015/10038-0), and National Institute of Science and Technology-Complex Fluids (INCT-FCx, Brazil).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed. This study is in agreement with the Guide for the Care and Use of Laboratory Animals of the Brazilian National Council of Animal Experimentation (CONCEA).

References

  1. 1.
    Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366(9496):1561–77.  https://doi.org/10.1016/S0140-6736(05)67629-5.CrossRefPubMedGoogle Scholar
  2. 2.
    de Camargo RA, Nicodemo AC, Sumi DV, Gebrim EM, Tuon FF, de Camargo LM, et al. Facial structure alterations and abnormalities of the paranasal sinuses on multidetector computed tomography scans of patients with treated mucosal leishmaniasis. PLoS Negl Trop Dis. 2014;8(7):e3001.  https://doi.org/10.1371/journal.pntd.0003001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amato VS, Tuon FF, Campos A, Bacha HA, Nicodemo AC, Amato Neto V, et al. Treatment of mucosal leishmaniasis with a lipid formulation of amphotericin B. Clin Infect Dis. 2007;44(2):311–2.CrossRefGoogle Scholar
  4. 4.
    Reithinger R, Dujardin J, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7:581–96.  https://doi.org/10.1016/S1473-3099(07)70209-8.CrossRefPubMedGoogle Scholar
  5. 5.
    Amato VS, Tuon FF, Camargo RA, Souza RM, Santos CR, Nicodemo AC. Can we use a lower dose of liposomal amphotericin B for the treatment of mucosal American leishmaniasis? Am J Trop Med Hyg. 2011;85(5):818–9.  https://doi.org/10.4269/ajtmh.2011.11-0287.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shaw CD, Carter KC. Drug delivery: lessons to be learnt from Leishmania studies. Nanomedicine (Lond). 2014;9:1531–44.CrossRefGoogle Scholar
  7. 7.
    Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother. 2015;16(2):237–52.  https://doi.org/10.1517/14656566.2015.973850.CrossRefPubMedGoogle Scholar
  8. 8.
    Tuon FF, Santos CR, Cieslinski J, Souza RM, Imamura R, Amato VS. Treatment of mucosal leishmaniasis with amphotericin B lipid complex (ABLC). Rev Inst Med Trop Sao Paulo. 2018;60:e71.  https://doi.org/10.1590/S1678-9946201860071.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine. 2017;12:5289–311.  https://doi.org/10.2147/IJN.S140363.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine. 2014;9:877–90.  https://doi.org/10.2147/IJN.S55678.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Redgrave TG, Maranhao RC. Metabolism of protein-free lipid emulsion models of chylomicrons in rats. Biochim Biophys Acta. 1985;835(1):104–12.CrossRefGoogle Scholar
  12. 12.
    Hirata MH, Oliveira HC, Quintão EC, Redgrave TG, Maranhão RC. The effects of Triton WR-1339, protamine sulfate and heparin on the plasma removal of emulsion models of chylomicrons and remnants in rats. Biochim Biophys Acta. 1987;917(2):344–6.CrossRefGoogle Scholar
  13. 13.
    Maranhão RC, Feres MC, Martins MT, Mesquita CH, Toffoletto O, Vinagre CG, et al. Plasma kinetics of a chylomicron-like emulsion in patients with coronary artery disease. Atherosclerosis. 1996;126(1):15–25.CrossRefGoogle Scholar
  14. 14.
    Sposito AC, Lemos PA, Santos RD, Hueb W, Vinagre CG, Quintella E, et al. Impaired intravascular triglyceride lipolysis constitutes a marker of clinical outcome in patients with stable angina undergoing secondary prevention treatment: a long-term follow-up study. J Am Coll Cardiol. 2004;43(12):2225–32.  https://doi.org/10.1016/j.jacc.2003.11.065.CrossRefPubMedGoogle Scholar
  15. 15.
    Bernardes-Silva H, Toffoletto O, Bortolotto LA, Latrilha MC, Krieger EM, Pileggi F, et al. Malignant hypertension is accompanied by marked alterations in chylomicron metabolism. Hypertension. 1995;26(6 Pt 2):1207–10.CrossRefGoogle Scholar
  16. 16.
    Borba EF, Bonfá E, Vinagre CG, Ramires JA, Maranhão RC. Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum. 2000;43(5):1033–40.  https://doi.org/10.1002/1529-0131(200005)43:5<1033::AID-ANR11>3.0.CO;2-B.CrossRefPubMedGoogle Scholar
  17. 17.
    Vinagre CG, Stolf NA, Bocchi E, Maranhão RC. Chylomicron metabolism in patients submitted to cardiac transplantation. Transplantation. 2000;69(4):532–7.CrossRefGoogle Scholar
  18. 18.
    Souza LC, Maranhão RC, Schreier S, Campa A. In-vitro and in-vivo studies of the decrease of amphotericin B toxicity upon association with a triglyceride-rich emulsion. J Antimicrob Chemother. 1993;32(1):123–32.CrossRefGoogle Scholar
  19. 19.
    Souza LC, Campa A. Pharmacological parameters of intravenously administered amphotericin B in rats: comparison of the conventional formulation with amphotericin B associated with a triglyceride-rich emulsion. J Antimicrob Chemother. 1999;44(1):77–84.CrossRefGoogle Scholar
  20. 20.
    Shaw CD, Carter KC. Drug delivery: lessons to be learnt from Leishmania studies. Nanomedicine (Lond). 2014;9(10):1531–44.  https://doi.org/10.2217/nnm.14.66.CrossRefGoogle Scholar
  21. 21.
    Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, et al. Diagnosis and treatment of Leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis. 2016;63(12):1539–57.  https://doi.org/10.1093/cid/ciw742.CrossRefPubMedGoogle Scholar
  22. 22.
    Inselmann G, Inselmann U, Heidemann HT. Amphotericin B and liver function. Eur J Intern Med. 2002;13(5):288–92.CrossRefGoogle Scholar
  23. 23.
    Kyriakidis I, Tragiannidis A, Munchen S, Groll AH. Clinical hepatotoxicity associated with antifungal agents. Expert Opin Drug Saf. 2017;16(2):149–65.  https://doi.org/10.1080/14740338.2017.1270264.CrossRefPubMedGoogle Scholar
  24. 24.
    Palma E, Pasqua A, Gagliardi A, Britti D, Fresta M, Cosco D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: an overview. Materials (Basel). 2018;11(7). pii: E1167. doi:  https://doi.org/10.3390/ma11071167 CrossRefGoogle Scholar
  25. 25.
    de Souza A, Marins DSS, Mathias SL, Monteiro LM, Yukuyama MN, Scarim CB, et al. Promising nanotherapy in treating leishmaniasis. Int J Pharm. 2018;547(1–2):421–31.  https://doi.org/10.1016/j.ijpharm.2018.06.018.CrossRefPubMedGoogle Scholar
  26. 26.
    Chávez-Fumagalli MA, Ribeiro TG, Castilho RO, Fernandes SO, Cardoso VN, Coelho CS, et al. New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Rev Soc Bras Med Trop. 2015;48(3):235–42.  https://doi.org/10.1590/0037-8682-0138-2015.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  • Regina Maia de Souza
    • 1
  • Raul Cavalcante Maranhão
    • 2
    • 3
    Email author
  • Elaine Rufo Tavares
    • 2
  • Fabíola Branco Filippin-Monteiro
    • 4
  • Antônio Carlos Nicodemo
    • 1
  • Aleksandra Tiemi Morikawa
    • 2
  • Edite Hatsumi Yamashiro Kanashiro
    • 5
  • Valdir Sabbaga Amato
    • 1
  1. 1.Department of Infectious and Parasitic Diseases, School of MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Lipid Metabolism Laboratory, Heart Institute, Medical School HospitalUniversity of São PauloSão PauloBrazil
  3. 3.Laboratório de Metabolismo e LípidesInstituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP)São PauloBrazil
  4. 4.Clinical Analysis Department, Faculty of Pharmaceutical SciencesUniversity of Santa CatarinaFlorianópolisBrazil
  5. 5.Laboratory of Seroepidemiology and Immunobiology, Tropical Medicine Institute, School of MedicineUniversity of São PauloSão PauloBrazil

Personalised recommendations