Advertisement

Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach

  • Mahsa Sedighi
  • Sandro Sieber
  • Fereshteh Rahimi
  • Mohammad-Ali Shahbazi
  • Ali Hossein Rezayan
  • Jörg Huwyler
  • Dominik Witzigmann
Short Communication
  • 17 Downloads

Abstract

Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here, we present a systematic approach for the rapid size optimization of liposomes. The combination of microfluidics with a design-of-experiment (DoE) approach offers a strategy to rapidly screen and optimize various liposome formulations, i.e., up to 30 liposome formulations in 1 day. Five representative liposome formulations based on clinically approved lipid compositions were formulated using systematic variations in microfluidics flow rate settings, i.e., flow rate ratio (FRR) and total flow rate (TFR). Interestingly, flow rate-dependent DoE models for the prediction of liposome characteristics could be grouped according to lipid-phase transition temperature and surface characteristics. For all formulations, the FRR had a significant impact (p < 0.001) on hydrodynamic diameter and size distribution of liposomes, while the TFR mainly affected the production rate. Liposome characteristics remained constant for TFRs above 8 mL/min. The stability study revealed an influence of lipid:cholesterol ratio (1:1 and 2:1 ratio) and presence of PEG on liposome characteristics during storage. To validate our DoE models, we formulated liposomes incorporating hydrophobic dodecanethiol-coated gold nanoparticles. This proof-of-concept step showed that flow rate settings predicted by DoE models successfully determined the size of resulting empty liposomes (109.3 ± 15.3 nm) or nanocomposites (111 ± 17.3 nm). This study indicates that a microfluidics-based formulation approach combined with DoE is suitable for the routine development of monodisperse and size-specific liposomes in a reproducible and rapid manner.

Keywords

Liposomes Microfluidics Design-of-experiment Physicochemical characteristics Nanomedicines 

Notes

Acknowledgments

We thank the bioimaging center of the Biozentrum Basel for their support with electron microscopy techniques and Tomas Skrinskas for proofreading the manuscript.

Funding information

This study received financial support from the “Stiftung zur Förderung des pharmazeutischen Nachwuchses in Basel,” “Freiwillige Akademische Gesellschaft Basel,” and the Swiss National Science Foundation (SNF grant No. 174975 and 173057).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13346_2018_587_MOESM1_ESM.docx (558 kb)
ESM 1 (DOCX 558 kb)

References

  1. 1.
    Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release Off J Control Release Soc. 2015;200:138–57.CrossRefGoogle Scholar
  2. 2.
    Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007;120:2527–37.CrossRefGoogle Scholar
  3. 3.
    Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–623.CrossRefGoogle Scholar
  4. 4.
    Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10:831–47.CrossRefGoogle Scholar
  5. 5.
    Shahbazi M-A, Almeida PV, Correia A, Herranz-Blanco B, Shrestha N, Mäkilä E, et al. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. J Control Release Off J Control Release Soc. 2017;249:111–22.CrossRefGoogle Scholar
  6. 6.
    Shahbazi M-A, Shrestha N, Mäkilä E, Araújo F, Correia A, Ramos T, et al. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res. 2015;8:1505–21.CrossRefGoogle Scholar
  7. 7.
    Tokonami S, Yamamoto Y, Shiigi H, Nagaoka T. Synthesis and bioanalytical applications of specific-shaped metallic nanostructures: a review. Anal Chim Acta. 2012;716:76–91.CrossRefGoogle Scholar
  8. 8.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.CrossRefGoogle Scholar
  9. 9.
    Gregoriadis G. Liposomology: delivering the message. J Liposome Res. 2018;28:1–4.CrossRefGoogle Scholar
  10. 10.
    Slingerland M, Guchelaar H-J, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–6.CrossRefGoogle Scholar
  11. 11.
    Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release Off J Control Release Soc. 2012;160:117–34.CrossRefGoogle Scholar
  12. 12.
    Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:1–33.CrossRefGoogle Scholar
  14. 14.
    Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm. 2014;477:361–8.CrossRefGoogle Scholar
  15. 15.
    Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012;e37:1.Google Scholar
  16. 16.
    Kastner E, Verma V, Lowry D, Perrie Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int J Pharm. 2015;485:122–30.CrossRefGoogle Scholar
  17. 17.
    Song Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small Weinh Bergstr Ger. 2008;4:698–711.CrossRefGoogle Scholar
  18. 18.
    Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016;6:25876.CrossRefGoogle Scholar
  19. 19.
    Mijajlovic M, Wright D, Zivkovic V, Bi JX, Biggs MJ. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf B Biointerfaces. 2013;104:276–81.CrossRefGoogle Scholar
  20. 20.
    Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release Off J Control Release Soc. 2016;221:1–8.CrossRefGoogle Scholar
  21. 21.
    Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2:277–88.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Leonard RCF, Williams S, Tulpule A, Levine AM, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast Edinb Scotl. 2009;18:218–24.CrossRefGoogle Scholar
  23. 23.
    Rodriguez MA, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B, et al. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer. 2009;115:3475–82.CrossRefGoogle Scholar
  24. 24.
    Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.CrossRefGoogle Scholar
  25. 25.
    Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006;66:3271–7.CrossRefGoogle Scholar
  26. 26.
    Rasch MR, Rossinyol E, Hueso JL, Goodfellow BW, Arbiol J, Korgel BA. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 2010;10:3733–9.CrossRefGoogle Scholar
  27. 27.
    Witzigmann D, Sieber S, Porta F, Grossen P, Bieri A, Strelnikova N, et al. Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Adv. 2015;5:74320–8.CrossRefGoogle Scholar
  28. 28.
    Kulkarni JA, Tam YYC, Chen S, Tam YK, Zaifman J, Cullis PR, et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale. 2017;9:13600–9.CrossRefGoogle Scholar
  29. 29.
    Balbino TA, Aoki NT, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33.CrossRefGoogle Scholar
  30. 30.
    Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci. 2014;9:176–82.CrossRefGoogle Scholar
  31. 31.
    Balbino TA, Azzoni AR, de la Torre LG. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf B Biointerfaces. 2013;111:203–10.CrossRefGoogle Scholar
  32. 32.
    Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano. 2010;4:2077–87.CrossRefGoogle Scholar
  33. 33.
    Correia MG, Briuglia ML, Niosi F, Lamprou DA. Microfluidic manufacturing of phospholipid nanoparticles: stability, encapsulation efficacy, and drug release. Int J Pharm. 2017;516:91–9.CrossRefGoogle Scholar
  34. 34.
    Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B. 2015;119:8698–706.CrossRefGoogle Scholar
  35. 35.
    Zhigaltsev IV, Tam YK, Leung AKK, Cullis PR. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. J Liposome Res. 2016;26:96–102.PubMedGoogle Scholar
  36. 36.
    Gregoriadis G, Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun. 1979;89:1287–93.CrossRefGoogle Scholar
  37. 37.
    Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186:591–8.CrossRefGoogle Scholar
  38. 38.
    Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–42.CrossRefGoogle Scholar
  39. 39.
    Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7:753–63.CrossRefGoogle Scholar
  40. 40.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–79.CrossRefGoogle Scholar
  41. 41.
    Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–404.CrossRefGoogle Scholar
  42. 42.
    Nikfarjam A, Rezayan AH, Mohammadkhani G, Mohammadnejad J. Label-free detection of digoxin using localized surface plasmon resonance-based nanobiosensor. Plasmonics. 2017;12:157–64.CrossRefGoogle Scholar
  43. 43.
    Liyun F, Xianggui K, Kefu C, Yajuan S, Qinghui Z, Youlin Z. Efficient phase transfer of hydrophobic CdSe quantum dots: from nonpolar organic solvent to biocompatible water buffer. Mater Chem Phys. 2005;93:310–3.CrossRefGoogle Scholar
  44. 44.
    Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bomans PH, Frederik PM, et al. Lipid−quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano. 2008;2:408–18.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Mahsa Sedighi
    • 1
    • 2
  • Sandro Sieber
    • 2
  • Fereshteh Rahimi
    • 1
  • Mohammad-Ali Shahbazi
    • 3
    • 4
  • Ali Hossein Rezayan
    • 1
  • Jörg Huwyler
    • 2
  • Dominik Witzigmann
    • 2
    • 5
  1. 1.Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Department of Pharmaceutical Sciences, Division of Pharmaceutical TechnologyUniversity of BaselBaselSwitzerland
  3. 3.Department of Micro- and NanotechnologyTechnical University of DenmarkKongens LyngbyDenmark
  4. 4.Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
  5. 5.Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations