Drug Delivery and Translational Research

, Volume 8, Issue 5, pp 1152–1161 | Cite as

Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization

  • Alexis Guionet
  • S. Moosavi Nejad
  • Justin Teissié
  • Takashi Sakugawa
  • Sunao Katsuki
  • Hidenori Akiyama
  • Hamid HosseiniEmail author
Original Article


Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.


Calcium electrotransfer Pulsed electric fields Permeabilization angle Transmembrane potential HeLa S3 cells 



Pulsed electric fields


Transmembrane potential


Minimum essential medium


Phosphate buffer saline


Ethylene diamine tetra acetic acid


Fetal bovine serum


Hank’s balanced salt solution


Metal oxide semiconductor field effect transistor


Voltage-dependent calcium channels



The authors would like to thank Ms. M. Ota, Mr. R. Matsushima, and Mr. Mr. N. Ohnishi for their help in conducting the experiments.

Funding information

This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (17K06163).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material


(AVI 2031 kb)


(AVI 2125 kb)


(AVI 2412 kb)


(AVI 2590 kb)


(AVI 2558 kb)


(AVI 2443 kb)

13346_2018_533_MOESM7_ESM.pptx (3.6 mb)
ESM 7 (PPTX 3672 kb)
13346_2018_533_MOESM8_ESM.pptx (80 kb)
ESM 8 (PPTX 79 kb)
13346_2018_533_MOESM9_ESM.pptx (290 kb)
ESM 9 (PPTX 289 kb)


  1. 1.
    Hamilton WA, Sale AJH. Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim. Biophys. Acta BBA—Gen. Subj. 1967;148:789–800.CrossRefGoogle Scholar
  2. 2.
    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta BBA—Gen Subj. 1967;148:781–8.CrossRefGoogle Scholar
  4. 4.
    Grahl T, Märkl H. Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol. 1995;45:148–57.CrossRefGoogle Scholar
  5. 5.
    Guionet A. La décontamination bactérienne de l’eau par impulsions électriques ultracourtes [Internet] [phd]. Université de Toulouse, Université Toulouse III—Paul Sabatier; 2014 [cited 2015 Oct 9]. Available from:
  6. 6.
    Zbinden MDA, Sturm BSM, Nord RD, Carey WJ, Moore D, Shinogle H, et al. Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng. 2013;110:1605–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Coustets M, Joubert-Durigneux V, Hérault J, Schoefs B, Blanckaert V, Garnier J-P, et al. Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry Amst Neth. 2015;103:74–81.CrossRefGoogle Scholar
  8. 8.
    Guionet A, Hosseini B, Teissié J, Akiyama H, Hosseini H. A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels. 2017;10:39.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mir LM, Orlowski S, Belehradek Jr J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol. 1991;27:68–72.CrossRefGoogle Scholar
  10. 10.
    Mir LM, Orlowski S. Mechanisms of electrochemotherapy. Adv Drug Deliv Rev. 1999;35:107–18.CrossRefPubMedGoogle Scholar
  11. 11.
    Rols MP, Tamzali Y, Teissié J. Electrochemotherapy of horses. A preliminary clinical report. Bioelectrochemistry Amst Neth. 2002;55:101–5.CrossRefGoogle Scholar
  12. 12.
    Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D, Bianchi G, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 2012;50:1213–25.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frandsen SK, Gibot L, Madi M, Gehl J, Rols M-P. Calcium Electroporation: Evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS ONE [Internet]. 2015 [cited 2017 Jan 4];10. Available from:
  14. 14.
    Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. PLoS One. 2015;10:e0122973.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tsong TY. Electroporation of cell membranes. Biophys J. 1991;60:297–306.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47.CrossRefPubMedGoogle Scholar
  17. 17.
    Golzio M, Gabriel B, Boissier F, Deuwille J, Rols MP, Teissié J. Calcium and electropermeabilized cells. J Soc Biol. 2003;197:301–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer. 2009;125:438–45.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974;14:881–99.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Grosse C, Schwan HP. Cellular membrane potentials induced by alternating fields. Biophys J. 1992;63:1632–42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Teissié J, Rols MP. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J. 1993;65:409–13.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamashita K, Hatanaka T, Akiyama H, Sakugawa T. Study of fast rise time pulse power generator using SiC-MOSFET and FRD. IEEE Pulsed Power Conf PPC. 2015;2015:1–4.Google Scholar
  23. 23.
    Kang DK, Hosseini SHR, Shiraishi E, Yamanaka M, Akiyama H. Single nanosecond pulsed electric field effects on embryonic development of the Medaka fish. IEEE Trans Plasma Sci. 2012;40:2379–87.CrossRefGoogle Scholar
  24. 24.
    Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cole KS. Electric impedance of marine egg membranes. Trans Faraday Soc. 1937;33:966–72.CrossRefGoogle Scholar
  26. 26.
    Schwan HP. Electric characteristics of tissues. Biophysik. 1963;1:198–208.CrossRefGoogle Scholar
  27. 27.
    Neumann E, Sowers AE, Jordan CA. Electroporation and electrofusion in cell biology. Electroporation electrofusion cell biology. New York: Plenum; 1989.Google Scholar
  28. 28.
    Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, et al. Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE. 2004;92:1122–37.CrossRefGoogle Scholar
  29. 29.
    Stein MA, Mathers DA, Yan H, Baimbridge KG, Finlay BB. Enteropathogenic Escherichia coli markedly decreases the resting membrane potential of Caco-2 and HeLa human epithelial cells. Infect Immun. 1996;64:4820–5.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Szabò I, Brutsche S, Tombola F, Moschioni M, Satin B, Telford JL, et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 1999;18:5517–27.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Jin Y, Plummer MR, Pooyan S, Gunaseelan S, Sinko PJ. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro inverso Tat cell penetrating peptide. Mol Pharm. 2009;6:836–48.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yamakage M, Namiki A. Calcium channels—basic aspects of their structure, function and gene encoding; anesthetic action on the channels—a review. Can J Anesth. 2002;49:151–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Kelland LR, Burgess L, Steel GG. Characterization of four new cell lines derived from human squamous carcinomas of the uterine cervix. Cancer Res. 1987;47:4947–52.PubMedGoogle Scholar
  35. 35.
    Clapham DE. Calcium Signaling. Cell. 2007;131(6):1047–58.CrossRefPubMedGoogle Scholar
  36. 36.
    Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF. Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. Biochim Biophys Acta BBA—Biomembr. 2009;1788:1168–75.CrossRefGoogle Scholar
  37. 37.
    Semenov I, Xiao S, Pakhomov AG. Primary pathways of intracellular Ca2+ mobilization by nanosecond pulsed electric field. Biochim Biophys Acta. 2013;1828:981–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Semenov I, Xiao S, Pakhomova ON, Pakhomov AG. Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium. 2013;54:145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gabriel B, Teissié J. Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J. 1999;76:2158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim. Biophys. Acta BBA—Biomembr. 2016;1858:2689–98.CrossRefGoogle Scholar
  41. 41.
    Chen C, Smye SW, Robinson MP, Evans JA. Membrane electroporation theories: a review. Med Biol Eng Comput. 2006;44:5–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Benz R, Beckers F, Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979;48:181–204.CrossRefPubMedGoogle Scholar
  43. 43.
    Zimmermann U. Electric breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol. 1986;105:175–256.CrossRefGoogle Scholar
  44. 44.
    Orio J, Bellard E, Baaziz H, Pichon C, Mouritzen P, Rols M-P, et al. Sub-cellular temporal and spatial distribution of electrotransferred LNA/DNA oligomer. J RNAi Gene Silenc Int J RNA Gene Target Res. 2013;9:479–85.Google Scholar
  45. 45.
    Rols MP, Teissié J. Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta. 1992;1111:45–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Teissie J, Rols MP. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci. 1994;720:98–110.CrossRefPubMedGoogle Scholar
  47. 47.
    Rosazza C, Escoffre J-M, Zumbusch A, Rols M-P. The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther. 2011;19:913–21.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rosazza C, Buntz A, Rieß T, Wöll D, Zumbusch A, Rols MP. Intracellular tracking of single plasmid DNA-particles after delivery by electroporation. Mol Ther. 2013;21(12):2217–26.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li J, Lin H. Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry. 2011;82:10–21.CrossRefPubMedGoogle Scholar
  50. 50.
    Vanbever R, Le B, Préat V. Transdermal delivery of fentanyl by electroporation I. Influence of electrical factors. Pharm Res. 1996;13:559–65.CrossRefPubMedGoogle Scholar
  51. 51.
    Denet A-R, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56:659–74.CrossRefPubMedGoogle Scholar
  52. 52.
    Pucihar G, Kotnik T, Miklavčič D, Teissié J. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J. 2008;95:2837–48.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zaharoff DA, Henshaw JW, Mossop B, Yuan F. Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood). 2008;233(1):94–105.CrossRefGoogle Scholar
  54. 54.
    Pakhomov AG, Miklavcic D, Markov MS. Advanced electroporation techniques in biology and medicine. CRC Press; 2010.Google Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  1. 1.Bioelectrics Department, Institute of Pulsed Power ScienceKumamoto UniversityKumamotoJapan
  2. 2.Institute of Pharmacology and Structural BiologyUniversity Paul SabatierToulouseFrance
  3. 3.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations