Advertisement

Drug Delivery and Translational Research

, Volume 9, Issue 1, pp 215–226 | Cite as

Easy formulation of liposomal doxorubicin modified with a bombesin peptide analogue for selective targeting of GRP receptors overexpressed by cancer cells

  • Antonella Accardo
  • Silvia Mannucci
  • Elena Nicolato
  • Federica Vurro
  • Carlo Diaferia
  • Pietro Bontempi
  • Pasquina MarzolaEmail author
  • Giancarlo MorelliEmail author
Original Article
  • 49 Downloads

Abstract

The article concerns the obtainment of liposomal doxorubicin (Dox) in which liposomes are externally modified with a targeting peptide able to drive the formulation in a selective way on membrane receptors overexpressed in tumors. We developed a kit composed by three different vials: (A) a vial containing a sterile, translucent, red dispersion of the liposomal doxorubicin drug (Doxil®), (B) a vial filled with a lyophilized powder of a modified phospholipid with a reactive function (DSPE-Peg-maleimide), and (C) a vial containing a 1–9 bombesin peptide analogue (Cys-BN-AA1) chemically modified to react in stoichiometric ratio respect to DSPE-Peg-maleimide. The chosen peptide is a stable analogue antagonist of the wild-type 1–9 bombesin peptide; it is very stable in serum; maintains high specificity, with nanomolar affinity, towards gastrin release peptide receptors (GRPRs indicated also as BB2); and is overexpressed in some cancer cells. Results on animal studies clearly indicate that in mice treated with the kit product (i.e., pegylated liposomal Dox modified with the bombesin analogue, Doxil-BN-AA1), tumor growth is reduced, with an improved efficacy respect to mice treated with non-modified pegylated liposomal Dox or with saline solution.

Keywords

Bombesin peptide Liposomes Doxorubicin delivery Anticancer efficacy Formulation kit 

Notes

Funding information

This research was funded by Italian Ministry for Research (M.I.U.R.), 0016/09 593/2000 (Invectors) and FIRB “RINAME” RBAP114AMK projects.

Compliance with ethical standards

Conflict of interest

A. Accardo and G. Morelli participate in a spin-off company (Invectors, srl) devoted to the development of targeted liposomal compounds for cancer therapy. The other authors report no conflicts of interest in this work.

References

  1. 1.
    Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9(5):219–28.Google Scholar
  2. 2.
    Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66.Google Scholar
  3. 3.
    Accardo A, Morelli G. Review peptide-targeted liposomes for selective drug delivery: advantages and problematic issues. Biopolymers. 2015;104(5):462–79.Google Scholar
  4. 4.
    Vijaykumar N, Sandeep K. Recent advances in liposomal drug delivery: a review. Pharmaceutical Nanotechnology. 2015;3(1):35–55.Google Scholar
  5. 5.
    Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99.Google Scholar
  6. 6.
    Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Delivery Rev. 2017:110, 111 80–101.Google Scholar
  7. 7.
    Narayanaswamy R, Wang T, Torchilin VP. Improving peptide applications using nanotechnology. Curr Top Med Chem. 2016;16(3):253–70.Google Scholar
  8. 8.
    de Smet M, Langereis S, van den Bosch S, Bitter K, Hijnen NM, Heijman E, et al. SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release. 2013;169(1–2):82–90.Google Scholar
  9. 9.
    Accardo A, Mansi R, Morisco A, Mangiapia G, Paduano L, Tesauro D, et al. Peptide modified nanocarriers for selective targeting of bombesin receptors. Mol BioSyst. 2010;6(5):878–87.Google Scholar
  10. 10.
    Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in poly-ethylene-glycol coated liposomes. Cancer Res. 1994;54:987–92.Google Scholar
  11. 11.
    Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys. 1996;36:1177–87.Google Scholar
  12. 12.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.Google Scholar
  13. 13.
    Accardo A, Aloj L, Aurilio M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine. 2014;27(9):1537–57.Google Scholar
  14. 14.
    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostic. 2012;2:3–44.Google Scholar
  15. 15.
    Ahn J, Miura Y, Yamada N, Chida T, Liu X, Kim A, et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials. 2015;39:23–30.Google Scholar
  16. 16.
    Liu M, Li W, Larregieu CA, Cheng M, Yan B, Chu T, et al. Development of synthetic peptide-modified liposomes with LDL receptor targeting capacity and improved anticancer activity. Mol Pharm. 2014;11(7):2305–12.Google Scholar
  17. 17.
    Ringhieri P, Iannitti R, Nardon C, Palumbo R, Fregona D, Morelli G, et al. Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. Int J Pharm. 2014;473:194–202.Google Scholar
  18. 18.
    Zong T, Mei L, Gao H, Shi K, Chen J, Wang Y, et al. Enhanced glioma targeting and penetration by dual-targeting liposome co-modified with T7 and TAT. J Pharm Sci. 2014;103(12):3891–901.Google Scholar
  19. 19.
    Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther. 2014;15(1):69–80.Google Scholar
  20. 20.
    Nahar K, Absar S, Gupta N, Kotamraju VR, McMurtry IF, Oka M, et al. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol Pharm. 2014;11(12):4374–84.Google Scholar
  21. 21.
    Wang F, Chen L, Zhang R, Chen Z, Zhu L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.Google Scholar
  22. 22.
    Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, et al. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials. 2014;35(17):4835–47.Google Scholar
  23. 23.
    Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, et al. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. Int J Nanomedicine. 2017;12:501–14.Google Scholar
  24. 24.
    Song S, Liu D, Peng J, Sun Y, Li Z, Gu JR, et al. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm. 2008;363:155–61.Google Scholar
  25. 25.
    Wickremasinghe NC, Kumar VA, Hartgerink JD. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release. Biomacromolecules. 2014;15:3587–95.Google Scholar
  26. 26.
    Pradhan TK, Katsuno T, Taylor JE, Kim SH, Ryan RR, Mantey SA, et al. Identification of a unique ligand which has high affinity for all four bombesin receptor subtypes. Eur J Pharmacol. 1998;343(2–3):275–87.Google Scholar
  27. 27.
    Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19(19):5434–43.Google Scholar
  28. 28.
    Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, et al. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist—from mice to men. Theranostics. 2014;4(4):412–9.Google Scholar
  29. 29.
    Majumdar ID, Weber HC. Biology of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):68–74.Google Scholar
  30. 30.
    Reubi JC. Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology. 2004;80(Suppl 1):51–6.Google Scholar
  31. 31.
    Fleischman A, Waser B, Reubi JC. High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. End Rel Canc. 2009;16:623–33.Google Scholar
  32. 32.
    Fang MZ, Liu C, Song Y, Yang GY, Nie Y, Liao J, et al. Over-expression of gastrin-releasing peptide in human esophageal squamous cell carcinomas. Carcinogenesis. 2004;25(6):865–71.Google Scholar
  33. 33.
    Körner M, Waser B, Rehmann R, Reubi JC. Early over-expression of GRP receptors in prostatic carcinogenesis. Prostate. 2014;74(2):217–24.Google Scholar
  34. 34.
    Reile H, Armatis PE, Schally AV. Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-I45: internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells. Prostate. 1994;25:29–38.Google Scholar
  35. 35.
    Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 1999;59:1152–9.Google Scholar
  36. 36.
    Fleischman A, Waser B, Reubi JC. Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms. Cel. Oncology. 200729(5):421–33.Google Scholar
  37. 37.
    Morgat C, MacGrogan G, Brouste V, Vélasco V, Sévenet N, Bonnefoi H, et al. Expression of gastrin-releasing peptide receptor (GRPR) in breast cancer and its association with pathological, biological and clinical parameters: a study of 1432 primary tumors. J Nucl Med. 2017;58:1401–7.Google Scholar
  38. 38.
    Gugger M, Reubi JC. GRP receptors in non-neoplastic and neoplastic human breast. Am J Pathol. 2000;155:2067–76.Google Scholar
  39. 39.
    Chao C, Kirk I, Hellmich HL. Gastrin-releasing peptide receptor in breast cancer mediates cellular migration and interleukin-8 expression. J Surg Res. 2009;156:26–31.Google Scholar
  40. 40.
    Chang WC, White PD. Fmoc solid phase peptide synthesis. New York: Oxford University Press; 2000.Google Scholar
  41. 41.
    Accardo A, Salsano G, Morisco M, et al. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine. 2012;7:2007–17.Google Scholar
  42. 42.
    Accardo A, Galli F, Mansi R, et al. Pre-clinical evaluation of DOTA coupled bombesin receptor ligands for imaging and therapy of gastrin releasing peptide receptor (GRP-R) expressing tumors. Eur J Nucl Med Mol Imaging. 2016;6:1–10.Google Scholar
  43. 43.
    Feldborg LN, Jølck RI, Andresen TL. Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles. Bioconjug Chem. 2012;23(12):2444–50.Google Scholar
  44. 44.
    Accardo A, Del Zoppo L, Morelli G, et al. Liposome antibody–ionophore conjugate antiproliferative activity increases by cellular metallostasis alteration. Med Chem Commun. 2016;7:2364–7.Google Scholar
  45. 45.
    Smith CJ, Volkert WA, Hoffman TJ. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol. 2005;32:733–40.Google Scholar
  46. 46.
    Hixon JH, Reshetnyak YK. Algorithms for the analysis of tryptophan fluorescence spectra and their correlation with protein structural parameters. Algorithms. 2009;2:1155–75.Google Scholar
  47. 47.
    Accardo A, Mansi R, Salsano G, et al. Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on cancer cells. J Drug Target. 2013;21(3):240–9.Google Scholar
  48. 48.
    Galbàn CJ, Hoff BA, Chenevert TL, et al. Diffusion MRI in early cancer therapeutic response assessment. NMR Biomed. 2017;30:3458.Google Scholar
  49. 49.
    Marzola P, Degrassi A, Calderan L, Farace P, Nicolato E, Crescimanno C, et al. Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin Cancer Res. 2005;11(16):5827–32.Google Scholar
  50. 50.
    Marzola P, Degrassi A, Calderan L, Farace P, Crescimanno C, Nicolato E, et al. In vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model. Clin Cancer Res. 2004;10(2):739–50.Google Scholar
  51. 51.
    Marzola P, Ramponi S, Nicolato E, Lovati E, Sandri M, Calderan L, et al. Effect of tamoxifen in an experimental model of breast tumor studied by dynamic contrast-enhanced magnetic resonance imaging and different contrast agents. Investig Radiol. 2005;40(7):421–9.Google Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Antonella Accardo
    • 1
    • 2
  • Silvia Mannucci
    • 3
  • Elena Nicolato
    • 3
  • Federica Vurro
    • 3
  • Carlo Diaferia
    • 1
  • Pietro Bontempi
    • 4
  • Pasquina Marzola
    • 4
    Email author
  • Giancarlo Morelli
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), IBB CNRUniversity of Naples “Federico II”NaplesItaly
  2. 2.Invectors srlNaplesItaly
  3. 3.Department of Neurological Biomedical and Movement SciencesUniversity of VeronaVeronaItaly
  4. 4.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations