Advertisement

Drug Delivery and Translational Research

, Volume 9, Issue 1, pp 76–84 | Cite as

Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis

  • Aiman Abu AmmarEmail author
  • Abed Nasereddin
  • Suheir Ereqat
  • Mary Dan-Goor
  • Charles L. Jaffe
  • Eyal Zussman
  • Ziad Abdeen
Original Article
  • 89 Downloads

Abstract

Cutaneous leishmaniasis (CL) is an infectious, parasitic disease caused by the protozoan Leishmania. Amphotericin B (AMB) is a macrolide polyene antibiotic presenting potent antifungal and antileishmanial activity, but due to poor water solubility at physiological pH, side effects, and toxicity, its therapeutic efficiency is limited. In the present study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AMB were generated to reduce drug toxicity and facilitate localized delivery over a prolonged time. AMB NPs were characterized for particle size, zeta potential, polydispersity index, and degree of aggregation. In vitro assessments demonstrated its sustained activity against Leishmania major promastigotes and parasite-infected macrophages. A single intralesional administration to infected BALB/c mice revealed that AMB NPs were more effective than AMB deoxycholate in terms of reducing lesion area. Taken together, these findings suggest that AMB NPs improve AMB delivery and can be used for local treatment of CL.

Keywords

Amphotericin B Nanoparticles Sustained release Cutaneous leishmaniasis Topical therapy 

Notes

Acknowledgments

This research was funded by the GIP program of the Deutsche Forschungsgemeinschaft (DFG) German Research Foundation. EZ wish to acknowledge the financial support of the RBNI-The Russell Berrie Nanotechnology Institute at the Technion. CLJ holds the Michael and Penny Feiwel Chair of Dermatology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13346_2018_603_MOESM1_ESM.pdf (195 kb)
ESM 1 (PDF 195 kb)

References

  1. 1.
    Gutierrez V, Seabra AB, Reguera RM, Khandare J, Calderon M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev. 2016;45(1):152–68.  https://doi.org/10.1039/c5cs00674k.Google Scholar
  2. 2.
    Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.  https://doi.org/10.1038/nrmicro2608.Google Scholar
  3. 3.
    Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–4.  https://doi.org/10.1126/science.1159194.Google Scholar
  4. 4.
    Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 2015;73(6):911–26; 27-8.  https://doi.org/10.1016/j.jaad.2014.09.014.Google Scholar
  5. 5.
    Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol. 2005;68(2):151–62.  https://doi.org/10.1007/s00253-005-1955-9.Google Scholar
  6. 6.
    Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97(7):2405–25.  https://doi.org/10.1002/jps.21179.Google Scholar
  7. 7.
    Mbongo N, Loiseau PM. Billion MA, Robert-Gero M. mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998;42(2):352–7.Google Scholar
  8. 8.
    Paila YD, Saha B, Chattopadhyay A. Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochem Biophys Res Commun. 2010;399(3):429–33.  https://doi.org/10.1016/j.bbrc.2010.07.099.Google Scholar
  9. 9.
    Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81(2):151–7.Google Scholar
  10. 10.
    Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J Control Release. 1998;56(1–3):285–91.Google Scholar
  11. 11.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998;27(3):603–18.Google Scholar
  12. 12.
    Espuelas MS, Legrand P, Irache JM, Gamazo C, Orecchioni AM, Devissaguet JP, et al. Poly(e-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int J Pharm. 1997;158(1):19–27.Google Scholar
  13. 13.
    Alvarez C, Shin DH, Kwon GS. Reformulation of Fungizone by PEG-DSPE micelles: deaggregation and detoxification of amphotericin B. Pharm Res. 2016;33(9):2098–106.  https://doi.org/10.1007/s11095-016-1948-7.Google Scholar
  14. 14.
    Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome((R))): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.  https://doi.org/10.1007/s40265-016-0538-7.Google Scholar
  15. 15.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.  https://doi.org/10.1016/j.jconrel.2012.01.043. Google Scholar
  16. 16.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8–21.Google Scholar
  17. 17.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.Google Scholar
  18. 18.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.  https://doi.org/10.1016/j.colsurfb.2009.09.001.Google Scholar
  19. 19.
    Zhou Z, Badkas A, Stevenson M, Lee JY, Leung YK. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int J Pharm. 2015;487(1–2):81–90.  https://doi.org/10.1016/j.ijpharm.2015.03.081.Google Scholar
  20. 20.
    Hudlikar MS, Li X, Gagarinov IA, Kolishetti N, Wolfert MA, Boons GJ. Controlled multi-functionalization facilitates targeted delivery of nanoparticles to cancer cells. Chemistry. 2016;22(4):1415–23.  https://doi.org/10.1002/chem.201503999.Google Scholar
  21. 21.
    Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58.Google Scholar
  22. 22.
    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.Google Scholar
  23. 23.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–98.Google Scholar
  24. 24.
    von Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23(21):4221–31.Google Scholar
  25. 25.
    Palma E, Pasqua A, Gagliardi A, Britti D, Fresta M, Cosco D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: an overview. Materials 2018;11(7). doi: https://doi.org/10.3390/ma11071167.
  26. 26.
    Kumar R, Sahoo GC, Pandey K, Das V, Das P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv. 2015;22(3):383–8.  https://doi.org/10.3109/10717544.2014.891271.Google Scholar
  27. 27.
    Butani D, Yewale C, Misra A. Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surf B: Biointerfaces. 2014;116:351–8.  https://doi.org/10.1016/j.colsurfb.2014.01.014.Google Scholar
  28. 28.
    Abu Ammar A, Raveendran R, Gibson D, Nassar T, Benita S. A lipophilic Pt(IV) oxaliplatin derivative enhances antitumor activity. J Med Chem. 2016;59(19):9035–46.  https://doi.org/10.1021/acs.jmedchem.6b00955.Google Scholar
  29. 29.
    Ryczak J, Papini M, Lader A, Nasereddin A, Kopelyanskiy D, Preu L, et al. 2-Arylpaullones are selective antitrypanosomal agents. Eur J Med Chem. 2013;64:396–400.  https://doi.org/10.1016/j.ejmech.2013.03.065.Google Scholar
  30. 30.
    Shimony O, Jaffe CL. Rapid fluorescent assay for screening drugs on Leishmania amastigotes. J Microbiol Methods. 2008;75(2):196–200.  https://doi.org/10.1016/j.mimet.2008.05.026.Google Scholar
  31. 31.
    Keurulainen L, Siiskonen A, Nasereddin A, Kopelyanskiy D, Sacerdoti-Sierra N, Leino TO, et al. Synthesis and biological evaluation of 2-arylbenzimidazoles targeting Leishmania donovani. Bioorg Med Chem Lett. 2015;25(9):1933–7.  https://doi.org/10.1016/j.bmcl.2015.03.027.Google Scholar
  32. 32.
    Haavikko R, Nasereddin A, Sacerdoti-Sierra N, Kopelyanskiy D, Alakurtti S, Tikka M, et al. Heterocycle-fused lupane triterpenoids inhibit Leishmania donovani amastigotes. MedChemComm. 2014;5(4):445–51.Google Scholar
  33. 33.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4.Google Scholar
  34. 34.
    Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161(3):795–803.  https://doi.org/10.1016/j.jconrel.2012.05.037. Google Scholar
  35. 35.
    Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.Google Scholar
  36. 36.
    Van de Ven H, Paulussen C, Feijens P, Matheeussen A, Rombaut P, Kayaert P, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161(3):795–803.Google Scholar
  37. 37.
    Carraro TCMM, Khalil NM, Mainardes RM. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharm Dev Technol. 2016;21(2):140–6.Google Scholar
  38. 38.
    Nahar M, Mishra D, Dubey V, Jain N, editors. Development of amphotericin b loaded PLGA nanoparticles for effective treatment of visceral leishmaniasis. 13th International Conference on Biomedical Engineering; 2009: SpringerGoogle Scholar
  39. 39.
    Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5.Google Scholar
  40. 40.
    Wang Y, Ke X, Voo ZX, Yap SS, Yang C, Gao S, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater. 2016;46:211–20.  https://doi.org/10.1016/j.actbio.2016.09.036.Google Scholar
  41. 41.
    Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52.  https://doi.org/10.1016/j.ijpharm.2011.05.049.Google Scholar
  42. 42.
    Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42(4):1530–6.Google Scholar
  43. 43.
    Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Romer S, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm. 2015;482(1–2):75–83.  https://doi.org/10.1016/j.ijpharm.2014.11.042.Google Scholar
  44. 44.
    Guedj AS, Kell AJ, Barnes M, Stals S, Goncalves D, Girard D, et al. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages. Int J Nanomedicine. 2015;10:5965–79.  https://doi.org/10.2147/IJN.S82205.Google Scholar
  45. 45.
    Abamor ES. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pac J Trop Med. 2017;10(1):25–34.  https://doi.org/10.1016/j.apjtm.2016.12.006.Google Scholar
  46. 46.
    Italia JL, Yahya MM, Singh D, Ravi Kumar MN. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res. 2009;26(6):1324–31.  https://doi.org/10.1007/s11095-009-9841-2.Google Scholar
  47. 47.
    Radwan MA, AlQuadeib BT, Siller L, Wright MC, Horrocks B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24(1):40–50.  https://doi.org/10.1080/10717544.2016.1228715.Google Scholar
  48. 48.
    Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW. Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis. 2004;38(3):377–83.  https://doi.org/10.1086/380971. Google Scholar
  49. 49.
    Yardley V, Croft SL. A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents. 2000;13(4):243–8.Google Scholar
  50. 50.
    de Carvalho RF, Ribeiro IF, Miranda-Vilela AL, de Souza Filho J, Martins OP, Cintra e Silva Dde O, et al. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol. 2013;135(2):217–22.Google Scholar
  51. 51.
    Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951–70.  https://doi.org/10.1016/S0140-6736(18)31204-2.Google Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Aiman Abu Ammar
    • 1
    • 2
    Email author
  • Abed Nasereddin
    • 3
    • 4
  • Suheir Ereqat
    • 4
    • 5
  • Mary Dan-Goor
    • 3
  • Charles L. Jaffe
    • 3
  • Eyal Zussman
    • 1
  • Ziad Abdeen
    • 4
  1. 1.NanoEngineering Group, Department of Mechanical EngineeringTechnion, Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Pharmaceutical EngineeringAzrieli College of EngineeringJerusalemIsrael
  3. 3.Department of Microbiology and Molecular Genetics, IMRICHebrew University-Hadassah Medical CenterJerusalemIsrael
  4. 4.Al-Quds Nutrition and Health Research Institute, Faculty of MedicineAl-Quds UniversityEast JerusalemPalestine
  5. 5.Biochemistry and Molecular Biology Department, Faculty of MedicineAl-Quds UniversityEast JerusalemPalestine

Personalised recommendations