Drug Delivery and Translational Research

, Volume 7, Issue 4, pp 558–570 | Cite as

Veterinary vaccine nanotechnology: pulmonary and nasal delivery in livestock animals

  • Daniella Calderon-Nieva
  • Kalhari Bandara Goonewardene
  • Susantha Gomis
  • Marianna FoldvariEmail author
Review Article


Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.


Pulmonary vaccine delivery Nasal vaccine delivery Aerosol Spray vaccine Livestock Chickens 


Compliance with ethical standards

Conflict of interest

D. Calderon-Nieva declares no conflicts of interest. S. Gomis, K. Goonewardene and M. Foldvari has received grants from the Natural Sciences and Engineering Research Council of Canada (NSERC-CRD), Agriculture Funding Consortium, Chicken Farmers of Saskatchewan, and Canadian Poultry Research Council and co-inventors on a patent application on vaccine delivery systems.


  1. 1.
    Panda AK. Nanotechnology in vaccine development. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2012;82:13–27.CrossRefGoogle Scholar
  2. 2.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Monath TP. Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine. 2013;31:5321–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Shams H. Recent developments in veterinary vaccinology. Vet J. 2005;170:289–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Roth JA. Veterinary vaccines and their importance to animal health and public health. Procedia in Vaccinology. 2011;5:127–36.CrossRefGoogle Scholar
  6. 6.
    Gerdts V, Mutwiri G, Richards J, van Drunen Littel-van den Hurk S, Potter AA. Carrier molecules for use in veterinary vaccines. Vaccine. 2013;31:596–602.PubMedCrossRefGoogle Scholar
  7. 7.
    van Oirschot JT. Present and future of veterinary viral vaccinology: a review. The Veterinary quarterly. 2001;23:100–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev. 2010;62:378–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129:1055–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Song K, Bolton DL, Wei CJ, Wilson RL, Camp JV, Bao S, et al. Genetic immunization in the lung induces potent local and systemic immune responses. Proc Natl Acad Sci U S A. 2010;107:22213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12:592–605.PubMedCrossRefGoogle Scholar
  13. 13.
    Villegas P, Kleven SH. Aerosol vaccination against Newcastle disease I. Studies on particle size. Avian Dis. 1976;20:179–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Gallorini S, O’Hagan DT, Baudner BC. Concepts in mucosal immunity and mucosal vaccines. In: das Neves J, Sarmento B, editors. Mucosal delivery of biopharmaceuticals: biology, challenges and strategies. Boston, MA: Springer US; 2014. p. 3–33.CrossRefGoogle Scholar
  15. 15.
    Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. Mucosal delivery of vaccines in domestic animals. Vet Res. 2006;37:487–510.PubMedCrossRefGoogle Scholar
  16. 16.
    White AD, Sibley L, Dennis MJ, Gooch K, Betts G, Edwards N, et al. Evaluation of the safety and immunogenicity of a candidate tuberculosis vaccine, MVA85A. Delivered by Aerosol to the Lungs of Macaques, Clinical and Vaccine Immunology. 2013;20:663–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Greenway TE. Induction of protective immune responses against Venezuelan equine encephalitis (VEE) virus aerosol challenge with microencapsulated VEE virus vaccine. Vaccine. 1998;15:1314–23.CrossRefGoogle Scholar
  18. 18.
    Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv. 2015;12:993–1008.PubMedCrossRefGoogle Scholar
  19. 19.
    Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87:187–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61:140–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Tell LA, Stephens K, Teague SV, Pinkerton KE, Raabe OG. Study of nebulization delivery of aerosolized fluorescent microspheres to the avian respiratory tract. Avian Dis. 2012;56:381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Taghavi A, Allan B, Mutwiri G, Foldvari M, Van Kessel A, Willson P, et al. Enhancement of immunoprotective effect of CpG-ODN by formulation with polyphosphazenes against E. coli septicemia in neonatal chickens. Current drug delivery. 2009;6:76–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Alcón VL, Baca-Estrada M, Vega-López MA, Willson P, Babiuk LA, Kumar P, et al. Intranasal immunization using biphasic lipid vesicles as delivery systems for OmlA bacterial protein antigen and CpG oligonucleotides adjuvant in a mouse model. J Pharm Pharmacol. 2005;57:955–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Mansoor F, Earley B, Cassidy JP, Markey B, Doherty S, Welsh MD. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet Res. 2015;11:220.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Morein B, Hu KF, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev. 2004;56:1367–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Muzzarelli R. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Marine Drugs. 2010;8:292.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Günbeyaz M, Faraji A, Özkul A, Puralı N, Şenel S. Chitosan based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1). Eur J Pharm Sci. 2010;41:531–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Meeusen ENT, Walker J, Peters A, Pastoret P-P, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007;20:489–510.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chiou C-J, Tseng L-P, Deng M-C, Jiang P-R, Tasi S-L, Chung T-W, et al. Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens. Biomaterials. 2009;30:5862–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev. 2006;58:68–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377:1032–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Dowling PM. Inhalation therapy for airway disease. In: Merck Sharp & Dohme Corporation; 2014.Google Scholar
  33. 33.
    Rathbone MJ, Martinez MN. Modified release drug delivery in veterinary medicine. Drug Discov Today. 2002;7:823–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Vandamme TF, Ellis KJ. Issues and challenges in developing ruminal drug delivery systems. Adv Drug Deliv Rev. 2004;56:1415–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Rothen-Weinhold A, Gurny R, Dahn M. Formulation and technology aspects of conrolled drug delivery in animals. Pharmaceutical science & technology today. 2000;3:222–31.CrossRefGoogle Scholar
  36. 36.
    Lange GD. Spray vaccination of day-old-chicks at the hatchery, in, Pas Reform Integrated hatchery solutions, Pas Reform Integrated hatchery solutions.Google Scholar
  37. 37.
    Hayter RB, Besch EL. Airborne-particle deposition in the respiratory tract of chickens. Poult Sci. 1974;53:1507–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Corbanie EA, Matthijs MG, van Eck JH, Remon JP, Landman WJ, Vervaet C. Deposition of differently sized airborne microspheres in the respiratory tract of chickens. Avian Pathol. 2006;35:475–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotech. 2010;28:1300–3.CrossRefGoogle Scholar
  40. 40.
    Maina JN. Structural and biomechanical properties of the exchange tissue of the avian lung. Anatomical record (Hoboken, NJ: 2007). 2015;298:1673–88.CrossRefGoogle Scholar
  41. 41.
    Bernhard W, Gebert A, Vieten G, Rau GA, Hohlfeld JM, Postle AD, et al. Pulmonary surfactant in birds: coping with surface tension in a tubular lung. Am J Physiol Regul Integr Comp Physiol. 2001;281:R327–37.PubMedGoogle Scholar
  42. 42.
    Tell LA, Smiley-Jewell S, Hinds D, Stephens KE, Teague SV, Plopper CG, et al. An aerosolized fluorescent microsphere technique for evaluating particle deposition in the avian respiratory tract. Avian Dis. 2006;50:238–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Stanley AC, Buxton D, Innes EA, Huntley JF. Intranasal immunisation with Toxoplasma gondii tachyzoite antigen encapsulated into PLG microspheres induces humoral and cell-mediated immunity in sheep. Vaccine. 2004;22:3929–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Peeters B, Tonnis WF, Murugappan S, Rottier P, Koch G, Frijlink HW, et al. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus. Vaccine. 2014;32:6445–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim M-G, Park JY, Shon Y, Kim G, Shim G, Oh Y-K. Nanotechnology and vaccine development. Asian Journal of Pharmaceutical Sciences. 2014;9:227–35.CrossRefGoogle Scholar
  46. 46.
    Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65:21–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357–73.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gautam A, Waldrep JC, Densmore CL. Aerosol gene therapy. Mol Biotechnol. 2003;23:51–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Siekmeier R, Scheuch G. Treatment of systemic diseases by inhalation of biomolecule aerosols. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2009;60(Suppl 5):15–26.Google Scholar
  50. 50.
    Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Kreyling WG, Hirn S, Schleh C. Nanoparticles in the lung. Nat Biotech. 2010;28:1275–6.CrossRefGoogle Scholar
  53. 53.
    Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res. 2004;21:671–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Yan S, Gu W, Xu ZP. Re-considering how particle size and other properties of antigen–adjuvant complexes impact on the immune responses. J Colloid Interface Sci. 2013;395:1–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12:677–87.CrossRefGoogle Scholar
  56. 56.
    Hardy CL, Lemasurier JS, Mohamud R, Yao J, Xiang SD, Rolland JM, et al. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J Immunol. 2013;191:5278–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27:905–19.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials. 2015;40:88–97.PubMedCrossRefGoogle Scholar
  59. 59.
    Rajapaksa TE, Stover-Hamer M, Fernandez X, Eckelhoefer HA, Lo DD. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J Control Release. 2010;142:196–205.PubMedCrossRefGoogle Scholar
  60. 60.
    Cruz LJ, Tacken PJ, Fokkink R, Figdor CG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials. 2011;32:6791–803.PubMedCrossRefGoogle Scholar
  61. 61.
    Carrillo-Conde B, Song E-H, Chavez-Santoscoy A, Phanse Y, Ramer-Tait AE, Pohl NLB, et al. Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol Pharm. 2011;8:1877–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. 2010;144:118–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Volkova MA, Irza AV, Chvala IA, Frolov SF, Drygin VV, Kapczynski DR. Adjuvant effects of chitosan and calcium phosphate particles in an inactivated Newcastle disease vaccine. Avian Dis. 2014;58:46–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Tseng L-P, Chiou C-J, Chen C-C, Deng M-C, Chung T-W, Huang Y-Y, et al. Effect of lipopolysaccharide on intranasal administration of liposomal Newcastle disease virus vaccine to SPF chickens. Vet Immunol Immunopathol. 2009;131:285–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Yaguchi K, Ohgitani T, Noro T, Kaneshige T, Shimizu Y. Vaccination of chickens with liposomal inactivated avian pathogenic Escherichia coli (APEC) vaccine by eye drop or coarse spray administration. Avian Dis. 2009;53:245–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Deville S, Arous JB, Bertrand F, Borisov V, Dupuis L. Efficacy of intranasal and spray delivery of adjuvanted live vaccine against infectious bronchitis virus in experimentally infected poultry. Procedia in Vaccinology. 2012;6:85–92.CrossRefGoogle Scholar
  67. 67.
    Ayalew LE, Kumar P, Gaba A, Makadiya N, Tikoo SK. Bovine adenovirus-3 as a vaccine delivery vehicle. Vaccine. 2015;33:493–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Babiuk LA, Tikoo SK. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J Biotechnol. 2000;83:105–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Brownlie R, Kumar P, Babiuk LA, Tikoo SK. Recombinant bovine adenovirus-3 co-expressing bovine respiratory syncytial virus glycoprotein G and truncated glycoprotein gD of bovine herpesvirus-1 induce immune responses in cotton rats. Mol Biotechnol. 2015;57:58–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Trudel M, Boulay G, Seguin C, Nadon F, Lussier G. Control of infectious bovine rhinotracheitis in calves with a BHV-1 subunit-ISCOM vaccine. Vaccine. 1988;6:525–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Díaz AG, Quinteros DA, Llabot JM, Palma SD, Allemandi DA, Ghersi G, et al. Spray dried microspheres based on chitosan: a promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis. Mater Sci Eng C. 2016;62:489–96.CrossRefGoogle Scholar
  72. 72.
    Tajdini F, Amini MA, Mokarram AR, Taghizadeh M, Azimi SM. Foot and Mouth Disease virus-loaded fungal chitosan nanoparticles for intranasal administration: impact of formulation on physicochemical and immunological characteristics. Pharm Dev Technol. 2014;19:333–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Gunawardana T, Foldvari M, Zachar T, Popowich S, Chow-Lockerbie B, Ivanova MV, et al. Protection of neonatal broiler chickens following in ovo delivery of oligodeoxynucleotides containing CpG motifs (CpG-ODN) formulated with carbon nanotubes or liposomes. Avian Dis. 2015;59:31–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Taghavi A, Allan B, Mutwiri G, Van Kessel A, Willson P, Babiuk L, et al. Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Dis. 2008;52:398–406.PubMedCrossRefGoogle Scholar
  75. 75.
    Gomis S, Babiuk L, Allan B, Willson P, Waters E, Ambrose N, et al. Protection of neonatal chicks against a lethal challenge of Escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Dis. 2004;48:813–22.PubMedCrossRefGoogle Scholar
  76. 76.
    Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine. 2007;25:2085–94.PubMedCrossRefGoogle Scholar
  77. 77.
    Saluja V, Amorij JP, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Sou T, Meeusen EN, de Veer M, Morton DAV, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29:191–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Amorij JP, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25:8707–17.PubMedCrossRefGoogle Scholar
  80. 80.
    Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J, et al. Immunization by a bacterial aerosol. Proc Natl Acad Sci U S A. 2008;105:4656–60.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Agarkhedkar S, Kulkarni PS, Winston S, Sievers R, Dhere RM, Gunale B, et al. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: a randomized controlled phase I clinical trial. Vaccine. 2014;32:6791–7.PubMedCrossRefGoogle Scholar
  82. 82.
    De Cort W, Haesebrouck F, Ducatelle R, van Immerseel F. Administration of a Salmonella Enteritidis DeltahilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain. Poult Sci. 2015;94:131–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32:6377–89.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Garlapati S, Garg R, Brownlie R, Latimer L, Simko E, Hancock REW, et al. Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles. Vaccine. 2012;30:5206–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Mackinnon KM, He H, Swaggerty CL, McReynolds JL, Genovese KJ, Duke SE, et al. In ovo treatment with CpG oligodeoxynucleotides decreases colonization of Salmonella enteriditis in broiler chickens. Vet Immunol Immunopathol. 2009;127:371–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Gomis S, Babiuk L, Godson DL, Allan B, Thrush T, Townsend H, et al. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect Immun. 2003;71:857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Negash T, Liman M, Rautenschlein S. Mucosal application of cationic poly(D,L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine. 2013;31:3656–62.PubMedCrossRefGoogle Scholar
  88. 88.
    SP Kalhari, Bandara Goonewardene, Thushari Gunwardana, Suresh Tikoo, Marianna Foldvari, Philip Willson, and Susantha Gomis, Immunoprotective effects against Escherichia coli septicemia in neonatal broiler chickens following intrapulmonary delivery of oligodeoxynucleotides containing CpG motifs (CpG-ODN) as micro-droplets (in preparation).Google Scholar
  89. 89.
    KBG Daniella Calderon, Susantha Gomis, Shelly Popowich, Thushari Gunawardana, Suresh Tikoo, Marianna Foldvari, Poultry vaccine nanoparticle design for inhalation: intrapulmonary delivery of oligodeoxynucleotides containing CpG motifs (CpG-ODN) in lipid-based and polymeric nanoparticles (in preparation).Google Scholar
  90. 90.
    Corbanie EA, Vervaet C, van Eck JHH, Remon JP, Landman WJM. Vaccination of broiler chickens with dispersed dry powder vaccines as an alternative for liquid spray and aerosol vaccination. Vaccine. 2008;26:4469–76.PubMedCrossRefGoogle Scholar
  91. 91.
    Steitz J, Wagner RA, Bristol T, Gao W, Donis RO, Gambotto A. Assessment of route of administration and dose escalation for an adenovirus-based influenza a virus (H5N1) vaccine in chickens. Clin Vaccine Immunol. 2010;17:1467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Katherine EVH Quesenberg E. Supportive care and emergency therapy. In: Avian Medicine, Iowa State University Press; 1994. pp. 9.Google Scholar
  93. 93.
    Sharma A, Krause A, Xu Y, Sung B, Wu W, Worgall S. Adenovirus-based vaccine with epitopes incorporated in novel fiber sites to induce protective immunity against Pseudomonas aeruginosa. PLoS One. 2013;8:e56996.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jeyanathan M, Shao Z, Yu X, Harkness R, Jiang R, Li J, et al. AdHu5Ag85A respiratory mucosal boost immunization enhances protection against pulmonary tuberculosis in BCG-primed non-human primates. PLoS One. 2015;10:e0135009.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Auten MW, Huang W, Dai G, Ramsay AJ. CD40 ligand enhances immunogenicity of vector-based vaccines in immunocompetent and CD4+ T cell deficient individuals. Vaccine. 2012;30:2768–77.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One. 2009;4:e5856.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J Immunol. 2005;174:7986–94.PubMedCrossRefGoogle Scholar
  98. 98.
    Mu J, Jeyanathan M, Shaler CR, Horvath C, Damjanovic D, Zganiacz A, et al. Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity. The journal of gene medicine. 2010;12:693–704.PubMedCrossRefGoogle Scholar
  99. 99.
    Gogev S, Vanderheijden N, Lemaire M, Schynts F, D’Offay J, Deprez I, et al. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine. 2002;20:1451–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Kumar P, Ayalew LE, Godson DL, Gaba A, Babiuk LA, Tikoo SK. Mucosal immunization of calves with recombinant bovine adenovirus-3 coexpressing truncated form of bovine herpesvirus-1 gD and bovine IL-6. Vaccine. 2014;32:3300–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Zakhartchouk AN, Pyne C, Mutwiri GK, Papp Z, Baca-Estrada ME, Griebel P, et al. Mucosal immunization of calves with recombinant bovine adenovirus-3: induction of protective immunity to bovine herpesvirus-1. J Gen Virol. 1999;80:1263–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Sjolander S, Drane D, Davis R, Beezum L, Pearse M, Cox J. Intranasal immunisation with influenza-ISCOM induces strong mucosal as well as systemic antibody and cytotoxic T-lymphocyte responses. Vaccine. 2001;19:4072–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Coulter A, Harris R, Davis R, Drane D, Cox J, Ryan D, et al. Intranasal vaccination with ISCOMATRIX adjuvanted influenza vaccine. Vaccine. 2003;21:946–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Santander-Ortega MJ, Peula-García JM, Goycoolea FM, Ortega-Vinuesa JL. Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability. Colloids Surf B: Biointerfaces. 2011;82:571–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Çokçalışkan C, Özyörük F, Gürsoy RN, Alkan M, Günbeyaz M, Arca HÇ, et al. Chitosan-based systems for intranasal immunization against foot-and-mouth disease. Pharm Dev Technol. 2014;19:181–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Rebelatto MC, Guimond P, Bowersock TL, HogenEsch H. Induction of systemic and mucosal immune response in cattle by intranasal administration of pig serum albumin in alginate microparticles. Vet Immunol Immunopathol. 2001;83:93–105.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  1. 1.School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and BiotechnologyUniversity of WaterlooWaterlooCanada
  2. 2.Department of Veterinary Pathology, Western College of Veterinary MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations