Skip to main content
Log in

Enzymatic activation of double-targeted 5′-O-l-valyl-decitabine prodrug by biphenyl hydrolase-like protein and its molecular design basis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A primary focus of this research was to explore the activation process and mechanism of decitabine (5-aza-2′-deoxycytidine, DAC) prodrug. Recently, it has been reported that biphenyl hydrolase-like protein (BPHL) can play an important role in the activation of some amino acid nucleoside prodrugs with a general preference for hydrophobic amino acids and 5′-esters. Therefore, we put forward a bold hypothesis that this novel enzyme may be primarily responsible for the activation process of DAC prodrug as well. 5′-O-l-valyl-decitabine (l-val-DAC) was synthesized before and can be transported across biological membranes by the oligopeptide transporter (PEPT1), granting it much greater utility in vivo. In this report, l-val-DAC was found to be a good substrate of BPHL protein (K m 0.59 mM; k cat/K m 553.69 mM−1 s−1). After intestinal absorption, l-val-DAC was rapidly and almost completely hydrolyzed to DAC and l-valine. The catalysis was mainly mediated by the BPHL hydrolase and resulted in the intestinal first-pass effect of l-val-DAC after oral administration in Sprague-Dawley rats with cannulated jugular and portal veins. The structural insights using computational molecular docking showed that BPHL had a unique binding mode for l-val-DAC. As a fundamental basis, the simulation was employed to explain the catalytic mechanism in molecular level. In conclusion, BPHL was at least one of the primary candidate enzymes for L-val-DAC prodrug activation. This promising double-targeted prodrug approach have more advantages than the traditional targeted designs due to its higher transport and more predictable activation, thereby leading to a favorable property for oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361(19):1872–85.

    Article  CAS  PubMed  Google Scholar 

  2. Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H. Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer. 2008;112(11):2341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi SH, Byun HM, Kwan JM, Issa JP, Yang AS. Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. Br J Haematol. 2007;138(5):616–23.

    Article  CAS  PubMed  Google Scholar 

  4. Fenaux P. Inhibitors of DNA methylation: beyond myelodysplastic syndromes. Nat Clin Prac Oncol. 2005;2(Suppl 1):36–44.

    Article  Google Scholar 

  5. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    Article  CAS  PubMed  Google Scholar 

  6. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–70.

    Article  CAS  PubMed  Google Scholar 

  7. Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci. 2000;2(1):E6.

    Article  CAS  PubMed  Google Scholar 

  8. Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47(10):2393–404.

    Article  CAS  PubMed  Google Scholar 

  9. De Clercq E, Field HJ. Antiviral prodrugs—the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol. 2006;147(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res. 1998;15(8):1154–9.

    Article  CAS  PubMed  Google Scholar 

  11. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  Google Scholar 

  12. Brandsch M, Knutter I, Leibach FH. The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Eur J Pharm Sci. 2004;21(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  13. Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci. 2000;89(6):781–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sinko PJ, Balimane PV. Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm Drug Dispos. 1998;19(4):209–17.

    Article  CAS  PubMed  Google Scholar 

  15. Curran M, Noble S. Valganciclovir. Drugs. 2001;61(8):1145–50. discussion 51-2

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Sun J, Gao Y, Jin L, Xu Y, Lian H, et al. A carrier-mediated prodrug approach to improve the oral absorption of antileukemic drug decitabine. Mol Pharm. 2013;10(8):3195–202.

    Article  CAS  PubMed  Google Scholar 

  17. Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev. 2004;56(1):53–102.

    Article  CAS  PubMed  Google Scholar 

  18. Landowski CP, Lorenzi PL, Song X, Amidon GL. Nucleoside ester prodrug substrate specificity of liver carboxylesterase. J Pharmacol Exp Ther. 2006;316(2):572–80.

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Dahan A, Amidon GL. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach. J Med Chem. 2010;53(2):624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun Y, Sun J, Shi S, Jing Y, Yin S, Chen Y, et al. Synthesis, transport and pharmacokinetics of 5′-amino acid ester prodrugs of 1-beta-D-arabinofuranosylcytosine. Mol Pharm. 2009;6(1):315–25.

    Article  CAS  PubMed  Google Scholar 

  21. Yan Z, Sun J, Chang Y, Liu Y, Fu Q, Xu Y, et al. Bifunctional peptidomimetic prodrugs of didanosine for improved intestinal permeability and enhanced acidic stability: synthesis, transepithelial transport, chemical stability and pharmacokinetics. Mol Pharm. 2011;8(2):319–29.

    Article  CAS  PubMed  Google Scholar 

  22. Kim I, Chu XY, Kim S, Provoda CJ, Lee KD, Amidon GL. Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J Biol Chem. 2003;278(28):25348–56.

    Article  CAS  PubMed  Google Scholar 

  23. Puente XS, Lopez-Otin C. Cloning and expression analysis of a novel human serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of aromatic compounds. J Biol Chem. 1995;270(21):12926–32.

    Article  CAS  PubMed  Google Scholar 

  24. Sun J, Dahan A, Walls ZF, Lai L, Lee KD, Amidon GL. Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect. Mol Pharm. 2010;7(6):2362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim I, Song X, Vig BS, Mittal S, Shin HC, Lorenzi PJ, et al. A novel nucleoside prodrug-activating enzyme: substrate specificity of biphenyl hydrolase-like protein. Mol Pharm. 2004;1(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  26. Kim I, Crippen GM, Amidon GL. Structure and specificity of a human valacyclovir activating enzyme: a homology model of BPHL. Mol Pharm. 2004;1(6):434–46.

    Article  CAS  PubMed  Google Scholar 

  27. Murakami T, Nakanishi M, Yoshimori T, Okamura N, Norikura R, Mizojiri K. Separate assessment of intestinal and hepatic first-pass effects using a rat model with double cannulation of the portal and jugular veins. Drug Metabolism and Pharmacokinetics. 2003;18(4):252–60.

    Article  CAS  PubMed  Google Scholar 

  28. Kuze J, Mutoh T, Takenaka T, Morisaki K, Nakura H, Hanioka N, et al. Separate evaluation of intestinal and hepatic metabolism of three benzodiazepines in rats with cannulated portal and jugular veins: comparison with the profile in non-cannulated mice. Xenobiotica. 2009;39(11):871–80.

    Article  CAS  PubMed  Google Scholar 

  29. Choi YH, Kim SG, Lee MG. Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J Pharm Sci. 2006;95(11):2543–52.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SH, Choi YM, Lee MG. Pharmacokinetics and pharmacodynamics of furosemide in protein-calorie malnutrition. J Pharmacokinet Biopharm. 1993;21(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  31. Lai L, Xu Z, Zhou J, Lee KD, Amidon GL. Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase. J Biol Chem. 2008;283(14):9318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montes M, Braud E, Miteva MA, Goddard ML, Mondesert O, Kolb S, et al. Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. J Chem Inf Model. 2008;48(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  33. Dehghanian F, Kay M, Kahrizi D. A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye’s binding affinity. Gene. 2015;569(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  34. Burnette TC, Harrington JA, Reardon JE, Merrill BM, de Miranda P. Purification and characterization of a rat liver enzyme that hydrolyzes valaciclovir, the L-valyl ester prodrug of acyclovir. J Biol Chem. 1995;270(26):15827–31.

    Article  CAS  PubMed  Google Scholar 

  35. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. 2014;54(8):2371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fatemi MH, Heidari A, Gharaghani S. QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors. J Theor Biol. 2015;369:13–22.

    Article  CAS  PubMed  Google Scholar 

  38. Lu SY, Jiang YJ, Lv J, Wu TX, Yu QS, Zhu WL. Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions. J Mol Graph Model. 2010;28(8):766–74.

    Article  CAS  PubMed  Google Scholar 

  39. Sun M, Wu C, Fu Q, Di D, Kuang X, Wang C, et al. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Int J Pharm. 2016;503(1–2):238–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Nature Science Foundation of China (No. 81302722).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Sun or Jin Sun.

Ethics declarations

All animal experiments in the present study were approved by the University Committee on Use and Care of Animals, Shenyang Pharmaceutical University.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Zhao, D., Sun, M. et al. Enzymatic activation of double-targeted 5′-O-l-valyl-decitabine prodrug by biphenyl hydrolase-like protein and its molecular design basis. Drug Deliv. and Transl. Res. 7, 304–311 (2017). https://doi.org/10.1007/s13346-016-0356-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0356-1

Keywords

Navigation