Combination use of liraglutide and insulin to Japanese patients with multiple insulin injection: efficacy and cost

  • Sellami-Mnif HoudaEmail author
  • Umehara Toshihiro
  • Yamazaki Yuriko
  • Otake Hiroyuki
  • Matoba Reie
  • Sakashita Anna
  • Matsuda Masafumi
Original Article



The introduction of liraglutide in the treatment of patients with type 2 diabetes already taking insulin is still subject to discussion in terms of timing and benefits. Gradually intensive insulin therapy is hastily prescribed. Switching from multiple insulin injection (MII) to insulin and liraglutide is evaluated in this study.


We studied 92 patients with type 2 diabetes previously under MII, C-peptide ≥ 1.5 ng/ml, divided into a group with reasonable glycemic control [RC: HbA1c < 8% (64 mmol/mol)] and another with a poor control [PC: HbA1c ≥ 8%, (64 mmol/mol)] after introduction of liraglutide and insulin therapy.


Except for HbA1c, there were no statistical differences between RC and PC groups. Basal insulin doses were adjusted to achieve the fasting plasma glucose of 90–120 mg/dl. HbA1c was significantly improved in both groups, from 9.6% ± 1.6 (81 mmol/mol) and 7.0% ± 0.6 (53 mmol/mol) to 8.0% ± 1.5 (64 mmol/mol) and 6.8 ± 0.5% (51 mmol/mol). Reduction of body weight was significant only in RC (from 70 ± 16 kg to 68 ± 16 kg, p < 0.01). All patients from RC group and 58% of PC group reached HbA1c < 8% without hypoglycemia.


This observation persuades us to propose the liraglutide and insulin combination to patients with C-peptide ≥ 1.5 ng/ml, regardless of the HbA1c.


Diabetes Liraglutide MMI therapy Safety Efficacy C-peptide 



This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

Matsuda Masafumi MD, Ph.D.: potential competing financial interest and association with commercial entities, cited below, that could be viewed as having an interest in the general area of the submitted manuscript: AstraZeneca Corporation, Sanofi Co., Ltd, Novo Nordisk Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd., Astellas Pharma Inc., Eli Lilly Co., Ltd., Mitsubishi Tanabe Co., Ltd., Ono Pharmaceutical Co., MSD Corporation, Novartis Pharma Corporation, Japan Boehringer Ingelheim Pharmaceutical Co., Ltd. Sellami-Mnif Houda MD has no competing interests to declare. Toshihiro Umehara MD, Ph.D. has no competing interests to declare. Yamazaki Yuriko MD has no competing interests to declare. Hiroyuki Otake MD, Ph.D. has no competing interests to declare. Tomoko Morita MD, Ph.D. has no competing interests to declare. Matoba Reie MD has no competing interests to declare. Sakashita Anna MD has no competing interests to declare.


  1. 1.
    World Health Organization. Global report on diabetes. Geneva: World Health Organization; 2016.Google Scholar
  2. 2.
    International Diabetes Federation. IDF diabetes atlas. 6th ed. Brussels: International Diabetes Federation; 2014. Scholar
  3. 3.
    Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics. 2015;33:811–31.CrossRefGoogle Scholar
  4. 4.
    Hex N, Bartlett C, Wright D, Taylor M, Varley D. Estimating the current and future costs of type 1 and type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med. 2012. Scholar
  5. 5.
    Hiroshi I, Nobuya I, Kohjiro U, Haruhiko O, Hideki K, Disuke K, Yasushi T, Narihito Y, Satoshi I. Treatment guide for diabetes. Japan Diabetes Society; 2014–2015.Google Scholar
  6. 6.
    American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes 2018. Diabetes Care. 2018;41(Supplement 1):S73–85.CrossRefGoogle Scholar
  7. 7.
    Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, Reinecke M. Mechanisms of beta-cell death in type 2 diabetes. Diabetes. 2005;54(Suppl 2):108–13.CrossRefGoogle Scholar
  8. 8.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.CrossRefGoogle Scholar
  9. 9.
    Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W. Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7–36 amide] in the fasting state in healthy subjects. Acta Diabetol. 1995;32:13–6.CrossRefGoogle Scholar
  10. 10.
    Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4:212–83.CrossRefGoogle Scholar
  11. 11.
    Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003;26(10):2929–40.CrossRefGoogle Scholar
  12. 12.
    Wajchenberg BL. β-cell failure in diabetes and preservation by clinical treatment. Endocr Rev. 2007;28(2):187–218.CrossRefGoogle Scholar
  13. 13.
    Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38:665–73.CrossRefGoogle Scholar
  14. 14.
    Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes. 2001;50:2530–9.CrossRefGoogle Scholar
  15. 15.
    Donahey JCK, Van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP-1 reduces short but not long-term food intake or body weight in lean and obese rats. Brain Res. 1998;779:75–83.CrossRefGoogle Scholar
  16. 16.
    Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2015;384(9961):2228–34.CrossRefGoogle Scholar
  17. 17.
    Seino Y, Kaneko S, Fukuda S, Osonoi T, Shiraiwa T, Nishijima K, Kaku K. OP72 Combination therapy with liraglutide and insulin in Japanese subjects with type 2 diabetes: the LIRA-ADD2INSULIN JAPAN trial. Diabetes Res Clin Pract. 2014. Scholar
  18. 18.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, LEADER Steering Committee, LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefGoogle Scholar
  19. 19.
    Wysham CH, Lin J, Kuritzky L. Safety and efficacy of a glucagon-like peptide-1 receptor agonist added to basal insulin therapy versus basal insulin with or without a rapid-acting insulin in patients with type 2 diabetes: results of a meta-analysis. Postgrad Med. 2017. Scholar
  20. 20.
    Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, Pocock S, Steinberg WM, Bergenstal RM, Mann JF, Ravn LS, Frandsen KB, Moses AC, Buse JB. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013. Scholar
  21. 21.
    Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DCW, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JPH. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22.CrossRefGoogle Scholar
  22. 22.
    Toyoda M, Yokoyama H, Abe K, Nakamura S, Suzuki D. Predictors of response to liraglutide in Japanese type 2 diabetes. Diabetes Res Clin Pract. 2014;106(3):451–7.CrossRefGoogle Scholar
  23. 23.
    Ito D, Iuchi T, Kurihara S, Inoue I, Katayama S, Inukai K. Efficacy and clinical characteristics of liraglutide in japanese patients with type 2 diabetes. J Clin Med Res. 2015;7(9):694–9.CrossRefGoogle Scholar
  24. 24.
    Kozawa J, Inoue K, Iwamoto R, Kurashiki Y, Okauchi Y, Kashine S, Kitamura T, Maeda N, Okita K, Iwahashi H, Funahashi T, Imagawa A, Shimomura I. Liraglutide is effective in type 2 diabetic patients with sustained endogenous insulin-secreting capacity. J Diabetes Investig. 2012. Scholar
  25. 25.
    Holman RR, Thorne KI, Farmer AJ, et al. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med. 2007;357:1716–30.CrossRefGoogle Scholar
  26. 26.
    Rys P, Wojciechowski P, Siejka S, Małecki P, Hak L, Malecki MT. A comparison of biphasic insulin aspart and insulin glargine administered with oral antidiabetic drugs in type 2 diabetes mellitus—a systematic review and meta-analysis. Int J Clin Pract. 2014;68(3):304–13.CrossRefGoogle Scholar
  27. 27.
    Reid T, Gao L, Gill J, Stuhr A, Traylor L, Vlajnic A, Rhinehart A. How much is too much? Outcomes in patients using high-dose insulin glargine. Int J Clin Pract. 2016;70(1):56–65.CrossRefGoogle Scholar
  28. 28.
    Mayfield JA, White RD. Insulin therapy for type 2 diabetes: rescue, augmentation, and replacement of beta-cell function. Am Fam Physician. 2004;70(3):489–500.Google Scholar
  29. 29.
    Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34(2):S279–84.CrossRefGoogle Scholar
  30. 30.
    Donner T, Sarkar S. Insulin–pharmacology, therapeutic regimens, and principles of intensive insulin therapy. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA):, Inc.; 2000. Accessed 23 Feb 2019.
  31. 31.
    Cefalu WT, Buse JB, Del Prato S, Home PD, LeRoith D, Nauck MA, Raz I, Rosenstock J, Riddle MC. Beyond metformin: safety considerations in the decision-making process for selecting a second medication for type 2 diabetes management: reflections from a diabetes care editors’ expert forum. Diabetes Care. 2014;37(9):2647–59.CrossRefGoogle Scholar
  32. 32.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.CrossRefGoogle Scholar
  33. 33.
    Nauck M, Frid A, Hermansen K, et al. LEAD-2 Study Group. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32:84–90.CrossRefGoogle Scholar
  34. 34.
    Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Sitagliptin Study 019 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2006;28:1556–68.CrossRefGoogle Scholar
  35. 35.
    Seino Y, Rasmussen MF, Nishida T, Kaku K. Efficacy and safety of the once-daily human GLP-1 analogue, liraglutide, vs glibenclamide monotherapy in Japanese patients with type 2 diabetes. Curr Med Res Opin. 2010;26(5):1013–22.CrossRefGoogle Scholar
  36. 36.
    Seino Y, Rasmussen MF, Zdravkovic M, Kaku K. Dose-dependent improvement in glycemia with once-daily liraglutide without hypoglycemia or weight gain: a double-blind, randomized, controlled trial in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2008;81(2):161–8.CrossRefGoogle Scholar
  37. 37.
    Fukushima M, et al. Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res Clin Pract. 2004;66(Suppl 1):S37–43.CrossRefGoogle Scholar
  38. 38.
    Chan JC, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.CrossRefGoogle Scholar
  39. 39.
    Yabe D, Kuwata H, Iwasaki M, Seino Y. Why are incretin-based therapies more efficient in East Asian? Perspectives from the pathophysiology of type 2 diabetes and East Asian dietary habits. EMJ Diabet. 2015;3(1):57–65.Google Scholar

Copyright information

© The Japan Diabetes Society 2019

Authors and Affiliations

  1. 1.Department of Endocrinology and Diabetes, Saitama Medical CenterSaitama Medical UniversityKawagoe-shiJapan

Personalised recommendations