Advertisement

VirusDisease

pp 1–10 | Cite as

Genome wide molecular evolution analysis of begomoviruses reveals unique diversification pattern in coat protein gene of Old World and New World viruses

  • Debayan Mondal
  • Somnath Mandal
  • Sandip Shil
  • Nandita SahanaEmail author
  • Goutam Kumar Pandit
  • Ashok Choudhury
Original Article
  • 44 Downloads

Abstract

Begomoviruses (Family-Geminiviridae) are plant infecting single stranded DNA viruses known to evolve very fast. Here, we have analysed the DNA-A sequences of 302 begomoviruses reported as ‘type isolates’ from different countries following the list of International Committee on Taxonomy of Viruses till 2017. Phylogenetic analysis was performed which revealed two major evolutionarily distinct groups namely Old World (OW) and New World (NW) viruses. Our work present evidence that cp gene has varied degree of diversification among the viruses reported from NW and OW. The NW viruses are more conserved in their cp gene sequences than that of OW viruses irrespective of host plant families. Further analysis reveals that cp gene differs in its recombination pattern among OW and NW viruses whereas rep gene is highly recombination prone in both OW and NW viruses. The sequence conservation in cp gene in NW viruses is a result of meagre recombination and subsequent low substitution rate in comparison to OW viruses. Our results demonstrated that the cp gene in NW viruses is less likely to possess nuclear localisation sequences than OW cp gene. Further we present evidence that the NW-cp is under the influence of strong purifying selection. We propose that the precoat protein (pcp) gene present exclusively in the 5’ of cp gene in OW viruses is highly diversified and strong positive selection working on pcp gene might be attributing largely to the diversity of OW-cp gene.

Keywords

Begomoviruses Coat protein Evolution NLS Mean diversity 

Notes

Acknowledgements

The authors would like to acknowledge Vice Chancellor of UBKV Dr. Chirantan Chattopadhyay, for his critical inputs during the course of study. We also acknowledge Dr. Sankalpa Ojha, Department of Agricultural Statistics; UBKV for helping us in the statistical analysis. Debayan Mondal has received University Merit Scholarship throughout his Master's study. The funding is exclusively sponsored by Institutional Project under Directorate of Research, UBKV (Project Code- UBKV/DR-191;04.26) .

Supplementary material

13337_2019_524_MOESM1_ESM.docx (61 kb)
Supplementary material 1 (DOCX 61 kb)
13337_2019_524_MOESM2_ESM.jpg (5.1 mb)
Supplementary material 2 (JPEG 5252 kb)
13337_2019_524_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 19 kb)
13337_2019_524_MOESM4_ESM.xlsx (21 kb)
Supplementary material 4 (XLSX 21 kb)
13337_2019_524_MOESM5_ESM.jpg (382 kb)
Supplementary material 5 (JPEG 382 kb)
13337_2019_524_MOESM6_ESM.xlsx (52 kb)
Supplementary material 6 (XLSX 51 kb)
13337_2019_524_MOESM7_ESM.xlsx (60 kb)
Supplementary material 7 (XLSX 60 kb)
13337_2019_524_MOESM8_ESM.jpg (64 kb)
Supplementary material 8 (JPEG 63 kb)
13337_2019_524_MOESM9_ESM.xlsx (19 kb)
Supplementary material 9 (XLSX 19 kb)
13337_2019_524_MOESM10_ESM.xlsx (12 kb)
Supplementary material 10 (XLSX 11 kb)
13337_2019_524_MOESM11_ESM.xlsx (31 kb)
Supplementary material 11 (XLSX 30 kb)
13337_2019_524_MOESM12_ESM.xlsx (30 kb)
Supplementary material 12 (XLSX 29 kb)
13337_2019_524_MOESM13_ESM.jpg (1.1 mb)
Supplementary material 13 (JPEG 1173 kb)
13337_2019_524_MOESM14_ESM.docx (12 kb)
Supplementary material 14 (DOCX 11 kb)
13337_2019_524_MOESM15_ESM.xlsx (23 kb)
Supplementary material 15 (XLSX 23 kb)
13337_2019_524_MOESM16_ESM.jpg (88 kb)
Supplementary material 16 (JPEG 87 kb)
13337_2019_524_MOESM17_ESM.xlsx (16 kb)
Supplementary material 17 (XLSX 16 kb)
13337_2019_524_MOESM18_ESM.jpg (389 kb)
Supplementary material 18 (JPEG 388 kb)

References

  1. 1.
    Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L, Zambriski PC, Gruissem W. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol. 1997;17:5077–86.CrossRefGoogle Scholar
  2. 2.
    Aragao FJ, Faria JC. First transgenic geminivirus-resistant plant in the field. Nat Biotechnol. 2009;27(12):1086–8.CrossRefGoogle Scholar
  3. 3.
    Bottcher B, Unseld S, Ceulemans H, Russell RB, Jeske H. Geminate structures of African cassava mosaic virus. J Virol. 2004;78(13):6758–65.CrossRefGoogle Scholar
  4. 4.
    Brameier M, Krings A, MacCallum RM. NucPred—predicting nuclear localization of proteins. BMC Bioinform. 2007;23(9):1159–60.CrossRefGoogle Scholar
  5. 5.
    Briddon RW, Stanley J. Sub-viral agents associated with plant-infecting single-stranded DNA viruses. Virology. 2006;344:198–210.CrossRefGoogle Scholar
  6. 6.
    Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol Biol. 2010;10:97.CrossRefGoogle Scholar
  7. 7.
    Brown JK, Fauquet CM, Briddon RW, Zerbini FM, Moriones E, Navas-Castillo J. Family Geminiviridae. In: Virus taxonomy 9th report of the international committee on taxonomy of viruses. 2012. p. 351–73.Google Scholar
  8. 8.
    Carvalho MF, Lazarowitz SG. Interaction of the movement protein NSP and the ArabidopsisAcetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity. J Virol. 2004;78(20):11161–71.CrossRefGoogle Scholar
  9. 9.
    Castillo AG. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78:2758–69.CrossRefGoogle Scholar
  10. 10.
    De Bruyn A, Harimalala M, Zinga I, Mabvakure BM, Hoareau M, Ravigné V, Walters M, Reynaud B, Varsani A, Harkins GW, Martin DP, Lett JM, Lefeuvre P. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol Biol. 2016;16:182.CrossRefGoogle Scholar
  11. 11.
    Duffy S, Holmes EC. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol. 2007;82(2):957–65.CrossRefGoogle Scholar
  12. 12.
    Gardiner WE, Sunter G, Bisaro DM. Identification of tomato golden mosaic virus-specific RNAs in infected plants. J Virol. 1989;170:243–50.CrossRefGoogle Scholar
  13. 13.
    Guerra Peraza O, Kirk D, Seltzer V, Veluthambi K, Scmit AC, Hohn T, Herzog E. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin α. J Gen Virol. 2005;86:1815–26.CrossRefGoogle Scholar
  14. 14.
    Gutierrez C. DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 2000;19:792–9.CrossRefGoogle Scholar
  15. 15.
    Ha C, Coombs S, Revill P, Harding R, Vu M, Dale J. Molecular characterization of begomoviruses and DNA satellites from Vietnam: additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. J Gen Virol. 2008;89:312–26.CrossRefGoogle Scholar
  16. 16.
    Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. Geminiviruses: models for plant DNA replication, transcription and cell cycle regulation. Crit Rev Biochem Mol Biol. 1999;18:71–106.Google Scholar
  17. 17.
    Harrison BD, Robinson DJ. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annu Rev Phytopathol. 1999;37:369–98.CrossRefGoogle Scholar
  18. 18.
    Harrison BD, Baker H, Bock KR, Guthrie EJ, Meredith G, Atkinson M. Plant viruses with circular single-stranded DNA. Nature. 1977;270:760–2.CrossRefGoogle Scholar
  19. 19.
    Harrison BD, Swanson MM, Fargette D. Begomovirus coat protein: serology, variation and functions. Physiol Mol Plant Pathol. 2002;60(5):257–71.CrossRefGoogle Scholar
  20. 20.
    Heyraud-Nitschke F, Schumacher S, Laufs J, Schaefer S, Schell J, Gronenborn B. Determination of the origin cleavage and joining domain of geminivirus rep proteins. Nucl Acids Res. 1995;23:910–6.CrossRefGoogle Scholar
  21. 21.
    Ho ES, Kuchie J, Duffy S. Bioinformatic analysis reveals genome size reduction and the emergence of tyrosine phosphorylation site in the movement protein of New World bipartite begomoviruses. PLoS ONE. 2014;9(11):e111957.CrossRefGoogle Scholar
  22. 22.
    Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell. 1998;95:963–74.CrossRefGoogle Scholar
  23. 23.
    Kosakovsky Pond SL, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21(10):2531–3.CrossRefGoogle Scholar
  24. 24.
    Kumar A, Sarin NB. RNAi: a promising approach to develop transgenic plants against geminiviruses and insects. J Plant Physiol Pathol. 2013;1:1.Google Scholar
  25. 25.
    Kumar SP, Patel SK, Kapopara RV, Jasrai YT, Pandya HA. Evolutionary and molecular aspects of indian tomato leaf curl virus coat protein. Int J Plant Genomics. 2012.  https://doi.org/10.1155/2012/417935/.Google Scholar
  26. 26.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;10:1093.Google Scholar
  27. 27.
    Kunik T, Salamon D, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H. Transgenic tomato plants expressing the tomato yellow curl virus capsid protein are resistant to the virus. Biotechnology (NY). 1994;12:500–4.CrossRefGoogle Scholar
  28. 28.
    Lefeuvre P, Harkins GW, Lett JM, Briddon RW, Chase MW, Moury B, Martin DP. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS ONE. 2011;6(5):e19193.CrossRefGoogle Scholar
  29. 29.
    Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG, Duffy S, Zerbini FM. The diversification of begomovirus populations is predominantly driven by mutational dynamics. J Virus Evol. 2017;3(1):vex005.Google Scholar
  30. 30.
    Lozano G, Trenado HP, Valverde RA, Navas-Castillo J. Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. J Gen Virol. 2009;90:2550–62.CrossRefGoogle Scholar
  31. 31.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1(1):1–5.CrossRefGoogle Scholar
  32. 32.
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL. Characterization of a New World monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. Virology. 2013;87:5397–413.CrossRefGoogle Scholar
  33. 33.
    Muhire BM, Varsani A, Martin DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 2014;9(9):e108277.CrossRefGoogle Scholar
  34. 34.
    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, Scheffler K. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013;30(5):1196–205.CrossRefGoogle Scholar
  35. 35.
    Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L. Functional analysis of a novel motif conserved across geminiviruses Rep proteins. J Virol. 2011;85:1182–92.CrossRefGoogle Scholar
  36. 36.
    Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett. 2009;583:1825–32.CrossRefGoogle Scholar
  37. 37.
    Padidam M, Beachy RN, Fauquet CM. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol. 1995;76:25–35.CrossRefGoogle Scholar
  38. 38.
    Pandey SP, Shahi P, Gase K, Baldwin IT. Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA. 2009;105:4559–64.CrossRefGoogle Scholar
  39. 39.
    Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lazarowitz SG. The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell. 1994;6:995–1006.CrossRefGoogle Scholar
  40. 40.
    Pedersen TJ, Hanley-Bowdoin L. Molecular characterization of the AL3 protein encoded by a bipartite geminivirus. J Virol. 1994;202:1070–5.CrossRefGoogle Scholar
  41. 41.
    Praveen S, Kushwaha CM, Mishra AK, Singh V, Jain RK, Varma A. Engineering tomato for resistance to tomato leaf curl disease using viral rep gene sequences. Plant Cell Tissue Organ Cult. 2005;83(3):311–8.CrossRefGoogle Scholar
  42. 42.
    Praveen S, Ramesh SV, Koundal V, Mishra AK, Jain RK. Small RNA mediated silencing to target tomato leaf curl virus. Plant Interact. 2007;2(4):213–8.CrossRefGoogle Scholar
  43. 43.
    Preiss W, Jeske H. Multitasking in replication is common among geminiviruses. J Virol. 2003;77(5):2972–80.CrossRefGoogle Scholar
  44. 44.
    Qazi J, Ilyas M, Briddon RW. Legume yellow mosaic viruses: genetically isolated begomoviruses. Mol Plant Pathol. 2007;8(4):343–8.CrossRefGoogle Scholar
  45. 45.
    Raney JL, Delongchamp RR, Valentine CR. Spontaneous mutant frequency and mutation spectrum for gene A of WX174 grown in E. coli. Environ Mol Mutagen. 2004;44:119–27.CrossRefGoogle Scholar
  46. 46.
    Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa KG, Abraham N, Rybicki EP, Martin D, Pietersen G, Esterhuizen LL. Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in Southern Africa, including the south-west Indian Ocean Islands. Viruses. 2012;4(9):1753–91.CrossRefGoogle Scholar
  47. 47.
    Rojas MR, Hagen C, Lucas WJ, Gibertson RL. Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol. 2005;43:361–94.CrossRefGoogle Scholar
  48. 48.
    Rosario K, Seah YM, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Ploston JE, Duffy S, Breitbart M. Vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae) reveal novel begomovirus species in the New and Old Worlds. Viruses. 2015;7(10):5553–70.CrossRefGoogle Scholar
  49. 49.
    Rybicki EP. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol. 1994;139:49–77.CrossRefGoogle Scholar
  50. 50.
    Saeed M, Zafar Y, Randles JW, Rezaian MAA. Monopartite begomovirus-associated DNA beta satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol. 2007;88:2881–9.CrossRefGoogle Scholar
  51. 51.
    Sahana N, Kaur H, Basavaraj Tena F, Jain RK, Paulkaitis P, Canto T, Praveen S. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro. PLoS ONE. 2012;7:e52546.CrossRefGoogle Scholar
  52. 52.
    Sahana N, Kaur H, Palukaitis P, Canto T, Praveen S. The asparagine residue in the FRNK box of potyviral helper-component protease is critical for template function and subcellular localization. J Gen Virol. 2014;95:1167–77.CrossRefGoogle Scholar
  53. 53.
    Sanchez-Campos S, Martínez-Ayala A, Márquez-Martín B, Aragón-Caballero L, Navas-Castillo J, Moriones E. Fulfilling Koch’s postulates confirms the monopartite nature of tomato leaf deformation virus, a begomovirus native to the New World. Virus Res. 2013;173:286–93.CrossRefGoogle Scholar
  54. 54.
    Sanderfoot AA, Lazarowitz SG. Cooperation in viral movement—the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell. 1995;7:1185–94.CrossRefGoogle Scholar
  55. 55.
    Settlage SB, See RG, Hanley-Bowdoin L. Geminivirus C3 protein: replication enhancement and protein interactions. J Virol. 2005;79(15):9885–95.CrossRefGoogle Scholar
  56. 56.
    Singh D, Gill JS, Gumber RK, Singh R, Singh S. Yield and fibre quality associated with cotton leaf curl disease of Bt-cotton in Punjab. J Environ Biol. 2013;34(1):113–6.Google Scholar
  57. 57.
    Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL. Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. J Mol Plant Microbe Interact. 1998;11:277–91.CrossRefGoogle Scholar
  58. 58.
    Unseld S, Hohnle M, Ringel M, Frischmuth T. Subcellular targeting of the coat protein of African cassava mosaic geminivirus. Virology. 2001;286:373–83.CrossRefGoogle Scholar
  59. 59.
    Wang H, Buckley KJ, Yang XJ, Buchmann RC, Bisaro DM. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol. 2005;79:7410–8.CrossRefGoogle Scholar

Copyright information

© Indian Virological Society 2019

Authors and Affiliations

  1. 1.Department of BiochemistryUttar Banga Krishi ViswavidyalayaCoochbeharIndia
  2. 2.Regional Research CentreICAR-CPCRIMohitnagar, JalpaiguriIndia
  3. 3.Soil Microbiology Laboratory, Regional Research Station, Terai ZoneUttar Banga Krishi ViswavidyalayaCoochbeharIndia

Personalised recommendations