Advertisement

Laguerre polynomials and transitional asymptotics of the modified Korteweg–de Vries equation for step-like initial data

  • M. Bertola
  • A. MinakovEmail author
Article
  • 19 Downloads

Abstract

We consider the compressive wave for the modified Korteweg–de Vries equation with background constants \(c>0\) for \(x\rightarrow -\infty \) and 0 for \(x\rightarrow +\infty \). We study the asymptotics of solutions in the transition zone \(4c^2t-\varepsilon t<x<4c^2t-\beta t^{\sigma }\ln t\) for \(\varepsilon >0,\) \(\sigma \in (0,1),\) \(\beta >0.\) In this region we have a bulk of nonvanishing oscillations, the number of which grows as \(\frac{\varepsilon t}{\ln t}.\) Also we show how to obtain Khruslov–Kotlyarov’s asymptotics in the domain \(4c^2t-\rho \ln t<x<4c^2t\) with the help of parametrices constructed out of Laguerre polynomials in the corresponding Riemann–Hilbert problem.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bertola, M., Buckingham, R., Lee, S.Y., Pierce, V.: Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. 153(4), 654–697 (2013).  https://doi.org/10.1007/s10955-013-0845-2 MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bertola, M., Lee, S.Y., Mo, M.Y.: Mesoscopic colonization in a spectral band. J. Phys. A 42, 41, 415204,17 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bertola, M., Lee, S.Y.: First colonization of a spectral outpost in random matrix theory. Constr. Approx. 30(2), 225–263 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bertola, M., Tovbis, A.: Universality for the focusing Schroedinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquee solution to Painleve I. Commun. Pure Appl. Math. 66(5), 678–752 (2013)zbMATHGoogle Scholar
  5. 5.
    Bothner, T., Deift, P., Its, A., Krasovsky, I.: On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I. Commun. Math. Phys. 337(3), 1397–1463 (2015). arxiv1407.2910MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bikbaev, R.F., Novokshenov, V.Yu.: The Korteveg–de Vries equation with finite gap boundary conditions and self-similar solutions of whitham equations Proc. In: III International Workshop “Nonlinear and Turbulent Processes in Physics” Kiev 1, 32–35 (1988)Google Scholar
  7. 7.
    Bikbaev, R.F., Novokshenov, Yu.V.: Existence and uniqueness of the solution of the Whitham equation (Russian). Asymptotic methods for solving problems in mathematical physics Akad. Nauk SSSR Ural. Otdel. Bashkir. Nauchn. Tsentr Ufa 81–95 (1989)Google Scholar
  8. 8.
    Bikbaev, R.F.: Structure of a shock wave in the theory of the Korteweg–de Vries equation. Phys. Lett. A 141(5–6), 289–293 (1989)MathSciNetGoogle Scholar
  9. 9.
    Bikbaev, R.F., Sharipov, R.A.: The asymptotic behaviour, as \(t\rightarrow \infty \), of the solution of the Cauchy problem for the Korteweg-de Vries equation in a class of potentials with finite-gap behaviour as \(x\rightarrow \pm \infty \). Teoret. Mat. Fiz. 78/3, 345–356 (1989). (translation in Theoret. and Math. Phys.78/3 244–252)Google Scholar
  10. 10.
    Bikbaev, R.F.: The Korteweg–de Vries equation with finite-gap boundary conditions and Whitham deformations of Riemann surfaces (Russian). Funktsional. Anal. i Prilozhen. 23/4, 1–10 (1990). (translation in Funct. Anal. Appl.23/4 257–266)MathSciNetGoogle Scholar
  11. 11.
    Bikbaev, R.F.: The influence of viscosity on the structure of shock waves in the MKdV model (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) Voprosy Kvant. Teor. Polya Statist. Fiz. 11, 37–42 (1995). (184 translation in J. Math. Sci.77 2 3042–3045)Google Scholar
  12. 12.
    Bikbaev, R.F.: Complex Whitham deformations in problems with “integrable instability” (Russian). Teoret. Mat. Fiz. 104/3, 393–419 (1996). (translation in Theoret. and Math. Phys.104/3 1078–1097)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bikbaev, R.F.: Modulational instability stabilization via complex Whitham deformations: nonlinear Schrodinger equation Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 215 Differentsialnaya Geom. Gruppy Li i Mekh. 14 65–76 310 translation in J. Math. Sci. (New York) 85 (1997) 1 1596–1604Google Scholar
  14. 14.
    Boutet de Monvel, A., Kotlyarov, V.P.: Focusing nonlinear Schrodinger equation on the quarter plane with time-periodic boundary condition: a Riemann–Hilbert approach. J. Inst. Math. Jussieu 6(4), 579–611 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Boutet de Monvel, A., Its, A.R., Kotlyarov, V.P.: Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition. C. R. Math. Acad. Sci. Paris 345(11), 615–620 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Boutet de Monvel, A., Its, A.R., Kotlyarov, V.P.: Long -time asymptotics for the focusing NLS equation with time—periodic boundary condition on the half line. Commun. Math. Phys. 290(2), 479–522 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Boutet de Monvel, A., Kotlyarov, V.P., Shepelsky, D.G.: Focusing NLS equation: long-time dynamics of step-like initial data. Int. Math. Res. Not. 7, 1613–1653 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Buckingham, R., Venakides, S.: Long-time asymptotics of the non-linear Schrodinger equation shock problem. Commun. Pure Appl. Math. 60(9), 1349–1414 (2007)zbMATHGoogle Scholar
  19. 19.
    Claeys, T.: Birth of a cut in unitary random matrix ensembles. Int. Math. Res. Not. (IMRN) 2008(6), 40 (2008).  https://doi.org/10.1093/imrn/rnm166 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Claeys, T., Grava, T.: Solitonic asymptotics for the Korteweg–de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42(5), 2132–2154 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Cohen, A., Kappeler, T.: Scattering and inverse scattering for steplike potentials in the Schrdinger equation. Indiana Univ. Math. J. 34(1), 121–180 (1985)zbMATHGoogle Scholar
  22. 22.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32(2), 121–251 (1979)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptot. MKdV Equ. Ann. Math. 137(2), 295–368 (1993)zbMATHGoogle Scholar
  26. 26.
    Deift, P., Venakides, S., Zhou, X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47(2), 199–206 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Egorova, I., Gladka, Z., Kotlyarov, V., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation with steplike initial data. Nonlinearity 26(7), 1839–1864 (2012)zbMATHGoogle Scholar
  28. 28.
    Grunert, K., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom. 12(3), 287324 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gurevich, A.V., Pitaevskii, L.P.: Decay of initial discontinuity in the Korteweg–de Vries equation. JETP Lett. 17/5, 193 (1975)Google Scholar
  30. 30.
    Jakovleva, A.I.: Master thesis “Application of inverse scattering transform method to a Cauchy problem for the modified Korteweg-de Vries equation”, Kharkov (1980) (Russian)Google Scholar
  31. 31.
    Kamvissis, S.: Long time behavior for the focusing nonlinear Schroedinger equation with real spectral singularities. Commun. Math. Phys. 180(2), 325–341 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Khruslov, E.Ya.: Splitting of an initial step-like perturbation for the KdV equation. Lett. JETP 21(4), 469–472 (1975)Google Scholar
  33. 33.
    Khruslov, EYa.: Asymptotics of the solution of the Cauchy problem for the Korteweg de Vries equation with initial data of step type. Matem. Sbornik (New Series) 99(141):2, 261–281 (1976)Google Scholar
  34. 34.
    Khruslov, E.Ya., Kotlyarov, V.P.: Asymptotic solitons of the modified Korteweg–de Vries equation. Inverse Probl. 5(6), 1075–1088 (1989)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Khruslov, E. Ya., Kotlyarov, V. P.: Soliton asymptotics of nondecreasing solutions of nonlinear completely integrable evolution equations. Spectral operator theory and related topics. Adv. Soviet Math. 19 American Mathematical Society, Providence, RI 129–180 (1994)Google Scholar
  36. 36.
    Khruslov, E.Ya., Kotlyarov, V.P.: Generation of asymptotic solitons in an integrable model of stimulated Raman scattering by periodic boundary data. Mat. Fiz. Anal. Geom. 10(3), 366–384 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Kotlyarov, V., Minakov, A.: Riemann-Hilbert problem to the modified Korteveg de Vries equation: long-time dynamics of the steplike initial data. J. Math. Phys. 51, 093506 (2010)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Kotlyarov, V., Minakov, A.: Step-initial function to the MKdV equation: hyper-elliptic long-time asymptotics of the solution. J. Math. Phys. Anal. Geom. 8(1), 37–61 (2011)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Kotlyarov, V., Minakov, A.: Modulated elliptic wave and asymptotic solitons in a shock problem to the modified Kortweg–de Vries equation. J. Phys. A 48(30), 305201, 35 (2015)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Lavrent’ev, M.A., Sabat, B.V.: Metody teorii funkcii kompleksnogo peremennogo. (Russian) Methods of the theory of functions of a complex variable Gosudarstv. Izdat. Tehn.-Teor. Lit. Moscow-Leningrad (1951)Google Scholar
  41. 41.
    Leach, J.A.: An initial-value problem for the modified Korteweg–de Vries equation. IMA J. Appl. Math. 78(6), 1196–1213 (2013)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Marchant, T.R.: Undular bores and the initial-boundary value problem for the modified Korteweg–de Vries equation. Wave Motion 45(4), 540–555 (2008)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Marchenko, V.A.: Operatory Shturma-Liuvillya i ikh prilozheniya. (Russian) [Sturm-Liouville operators and their applications] Izdat. “Naukova Dumka”, Kiev (1977) 331 ppGoogle Scholar
  44. 44.
    Minakov, A.: Long-time behaviour of the solution to the mKdV equation with step-like initial data. J. Phys. A: Math. Theor. 44, 085206 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Minakov, A.: Asymptotics of rarefaction wave solution to the mKdV equation. J. Math. Phys. Anal. Geom. 7(1), 59–86 (2011)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Moskovchenko, E.A., Kotlyarov, V.P.: A new Riemann–Hilbert problem in a model of stimulated Raman scattering. J. Phys. A: Math. Gen. 39, 014591 (2006)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Moskovchenko, E.A.: Simple periodic boundary data and Riemann–Hilbert problem for integrable model of the stimulated Raman scattering. J. Math. Phys. Anal. Geom. 5/1, 82–103 (2009)MathSciNetGoogle Scholar
  48. 48.
    Moskovchenko, E.A., Kotlyarov, V.P.: Periodic boundary data for an integrable model of stimulated Raman scattering: long-time asymptotic behavior. J. Phys. A: Math. Theor. 43(5), 31 (2010).  https://doi.org/10.1088/1751-8113/43/5/055205 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Minakov, A.: Ph.D. thesis. Riemann–Hilbert problems and the modified Korteweg de Vries equation: asymptotic analysis of solutions with step-like initial data (2013)Google Scholar
  50. 50.
    Mo, M.Y.: The Riemann–Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition. Int. Math. Res. Not (2008).  https://doi.org/10.1093/imrn/rnn042
  51. 51.
    Novokshenov, VYu.: Time asymptotics for soliton equations in problems with step initial conditions (Russian) Sovrem. Mat. Prilozh., Asimptot. Metody Funkts. Anal. 5, 138–168 (2005). (translation in J. Math. Sci. (N. Y.) 125 5 717–749)Google Scholar
  52. 52.
    Novoksenov, VYu.: Asymptotic behavior as \(t\rightarrow \infty \) of the solution of the Cauchy problem for a nonlinear Schrodinger equation (Russian). Dokl. Akad. Nauk SSSR 251(4), 799–802 (1980)MathSciNetGoogle Scholar
  53. 53.
    Novokshenov, VYu.: Asymptotic formulae for the solutions of the system of nonlinear Schrodinger equations. Uspekhi Matem Nauk 37(2), 215–216 (1982)zbMATHGoogle Scholar
  54. 54.
    Novokshenov, VYu.: Asymptotics as \(t\rightarrow \infty \) of the Solution to a Two-Dimentional Generalisation of the Toda Lattice. Doklady AN SSSR 265/6, 1320–1324 (1982). (translation in Soviet Math. Dokl 26/1 264–268)Google Scholar
  55. 55.
    Shabat, A.B.: An inverse scattering problem. (Russian). Differentsialnye Uravneniya 15(10), 1824–1834 (1918)Google Scholar
  56. 56.
    Trogdon, Thomas, Olver, Sheehan, Deconinck, Bernard: Numerical inverse scattering for the Kortewegde Vries and modified Kortewegde Vries equations. Physica D 241(11), 10031025 (2012)Google Scholar
  57. 57.
    Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. Constr. Approx. 25, 125–175 (2007)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Wadati, M.: The modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 34, 1289–1296 (1973)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Zaharov, V.E., Shabat, A.B.: A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. (Russian). Funkcional. Anal. i Prilozen. 8(3), 43–53 (1974)MathSciNetGoogle Scholar
  60. 60.
    Zhou, X.: The Riemann–Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20, 966–986 (1989)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada
  2. 2.International School for Advanced Studies (SISSA)TriesteItaly
  3. 3.Institut de Recherche en Mathématique et Physique (IRMP)Université catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations