Analysis and Mathematical Physics

, Volume 8, Issue 3, pp 383–414 | Cite as

Comments on the Green’s function of a planar domain

  • Diganta BorahEmail author
  • Pranav Haridas
  • Kaushal Verma


We study several quantities associated to the Green’s function of a multiply connected domain in the complex plane. Among them are some intrinsic properties such as geodesics, curvature, and \(L^2\)-cohomology of the capacity metric and critical points of the Green’s function. The principal idea used is an affine scaling of the domain that furnishes quantitative boundary behaviour of the Green’s function and related objects.


Green’s function Critical points Capactity metric Geodesics Curvature 

Mathematics Subject Classification

30C40 30F45 31A15 31C15 32F45 32Q05 32Q15 32Q45 34B27 53C22 53C23 



The first named author was supported by the DST-INSPIRE Grant IFA-13 MA-21. The last named author was supported by the DST Swarnajayanti Fellowship 2009–2010 and a UGC–CAS Grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Aboudi, N.: Geodesics for the capacity metric in doubly connected domains. Complex Var. Theory Appl. 50(1), 7–22 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Błocki, Z.: Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent. Math. 193(1), 149–158 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Donnelly, H.: \(L_2\) cohomology of pseudoconvex domains with complete Kähler metric. Michigan Math. J. 41(3), 433–442 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Donnelly, H., Fefferman, C.: \(L^{2}\)-cohomology and index theorem for the Bergman metric. Ann. Math. (2) 118(3), 593–618 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gustafsson, B., Sebbar, A.: Critical points of Green’s function and geometric function theory. Indiana Univ. Math. J. 61(3), 939–1017 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Herbort, G.: On the geodesics of the Bergman metric. Math. Ann. 264(1), 39–51 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hervé, M.: Analytic and Plurisubharmonic Functions in Finite and Infinite Dimensional Spaces. Lecture Notes in Mathematics, vol. 198. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lelong, P.: Fonctions plurisousharmoniques et fonctions analytiques de variables réelles. Ann. Inst. Fourier (Grenoble) 11, 515–562 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Levenberg, N., Yamaguchi, H.: The metric induced by the Robin function. Mem. Am. Math. Soc. 92(448), viii+156 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Maitani, F., Yamaguchi, H.: Variation of Bergman metrics on Riemann surfaces. Math. Ann. 330(3), 477–489 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McNeal, J.D.: \(L^2\) harmonic forms on some complete Kähler manifolds. Math. Ann. 323(2), 319–349 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Minda, C.D.: The capacity metric on Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 12(1), 25–32 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Minda, D.: Inequalities for the Hyperbolic Metric and Applications to Geometric Function Theory, Complex Analysis, I (College Park, Md., 1985–86). Lecture Notes in Mathematics, 1275th edn, pp. 235–252. Springer, Berlin (1987)Google Scholar
  15. 15.
    Ohsawa, T.: On the infinite dimensionality of the middle \(l^2\) cohomology of complex domains. Publ. Res. Inst. Math. Sci. 25(3), 499–502 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rodríguez, J.M., Tourís, E.: Gromov hyperbolicity through decomposition of metric spaces. Acta Math. Hung. 103(1–2), 107–138 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Solynin, A.: A note on equilibrium points of Green’s function. Proc. Am. Math. Soc. 136(3), 1019–1021 (2008). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Suita, N.: Capacities and kernels on Riemann surfaces. Arch. Ration. Mech. Anal. 46, 212–217 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tung, S.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yamaguchi, H.: Sur le mouvement des constantes de Robin. J. Math. Kyoto Univ. 15, 53–71 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research (IISER)PuneIndia
  2. 2.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations