Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing

  • Yiwen Tang
  • Hui Yuan
  • Jiangping Chen
  • Qiguo Xing
  • Rongxin SuEmail author
  • Wei Qi
  • Zhimin He
Open Access


We present a facile and effective method for fabrication of the localized surface plasmon resonance (LSPR) optical fiber sensor assisted by two polydopamine (PDA) layers with enhanced plasmonic sensing performance. The first PDA layer was self-polymerized onto the bare optical fiber to provide the catechol groups for the reduction from Ag+ to Ago through chelating and redox activity. As the reduction of Ag+ proceeds, Ag nanoparticles (NPs) were grown in-situ on the PDA layer with uniform distribution. The second PDA layer was applied to prevent Ag NPs from oxidating and achieve an improvement of LSPR signal. The PDA/Ag/PDA-based optical fiber sensor has an enhanced LSPR sensitivity of 961 nm/RIU and excellent oxidation resistance. The stable PDA/Ag/PDA-based LSPR sensor with high optical performance is very promising for future application in optical sensing field.


LSPR optical fiber polydopamine in-situ growth silver nanoparticles 



This work was supported by the National Natural Science Foundation of China (Grant No. 51473115), Tianjin Municipal Science and Technology Bureau, China (Grant Nos. 18YFZCSF00590 and 18YFHBZC00010), and Wuqing S&T Commission (Grant Nos. WQKJ201726 and WQKJ201806).


  1. [1]
    E. C. Peláez, M. C. Estevez, A. Portela, J. P. Salvador, M. P. Marco, and L. M. Lechuga, “Nanoplasmonic biosensor device for the monitoring of acenocoumarol therapeutic drug in plasma,” Biosensors and Bioelectronics, 2018, 119: 149–155.CrossRefGoogle Scholar
  2. [2]
    Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): s202–207.ADSCrossRefGoogle Scholar
  3. [3]
    M. T. Alula, L. Karamchand, N. R. Hendricks, and J. M. Blackburn, “Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine,” Analytica Chimica Acta, 2018, 1007: 40–49.CrossRefGoogle Scholar
  4. [4]
    Q. Jiang, M. Xue, P. Liang, C. Zhang, J. Lin, and J. Ouyang, “Principle and experiment of protein detection based on optical fiber sensing,” Photonic Sensors, 2017, 7(4): 317–324.ADSCrossRefGoogle Scholar
  5. [5]
    M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” Journal of the American Chemical Society, 2001, 123(7): 1471–1482.CrossRefGoogle Scholar
  6. [6]
    C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. Van Duyne, “Nanoparticles with tunable localized surface plasmon resonances,” Radiative Decay Engineering, Springer, Boston, MA, 2005, pp. 47–99.CrossRefGoogle Scholar
  7. [7]
    J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine, 2006, 1(2): 219–228.CrossRefGoogle Scholar
  8. [8]
    K. Jia, M. Y. Khaywah, Y. Li, J. L. Bijeon, P. M. Adam, R. Déurche, et al., “Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films,” ACS Applied Materials & Interfaces, 2014, 6(1): 219–227.CrossRefGoogle Scholar
  9. [9]
    M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber technology: a new avenue for optical nanosensors,” Photonic Sensors, 2012, 2(4): 289–314.ADSCrossRefGoogle Scholar
  10. [10]
    B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, 2014, 30(3): 946–954.CrossRefGoogle Scholar
  11. [11]
    T. J. Lin and M. F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, 2009, 24(5): 1213–1218.CrossRefGoogle Scholar
  12. [12]
    Y. Q. Chen and C. J. Lu, “Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, 2009, 135(2): 492–498.CrossRefGoogle Scholar
  13. [13]
    K. J. Chen and C. J. Lu, “A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum,” Talanta, 2010, 81(4): 1670–1675.CrossRefGoogle Scholar
  14. [14]
    J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sensors and Actuators B: Chemical, 2013, 181: 611–619.CrossRefGoogle Scholar
  15. [15]
    Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors, 2010, 10(4): 3585–3596.CrossRefGoogle Scholar
  16. [16]
    S. Shi, L. Wang, R. Su, B. Liu, R. Huang, W. Qi, and Z. He, “A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays,” Biosensors & Bioelectronics, 2015, 74: 454–460.CrossRefGoogle Scholar
  17. [17]
    Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors, 2012, 2(1): 37–49.ADSCrossRefGoogle Scholar
  18. [18]
    H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-inspired surface chemistry for multifunctional coatings,” Science, 2007, 318(5849): 426–430.ADSCrossRefGoogle Scholar
  19. [19]
    S. Hong, Y. S. Na, S. Choi, I. T. Song, W. Y. Kim, and H. Lee, “Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation,” Advanced Functional Materials, 2012, 22(22): 4711–4717.CrossRefGoogle Scholar
  20. [20]
    N. F. D. Vecchia, R. Avolio, M. Alfè, M. E. Errico, A. Napolitano, and M. D’Ischia, “Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point,” Advanced Functional Materials, 2013, 23(10): 1331–1340.CrossRefGoogle Scholar
  21. [21]
    R. A. Zangmeister, T. A. Morris, and M. J. Tarlov, “Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine,” Langmuir, 2013, 29(27): 8619–8628.CrossRefGoogle Scholar
  22. [22]
    S. Shi, L. B. Wang, A. K. Wang, R. L. Huang, L. Ding, R. X. Su, et al., “Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating,” Journal of Materials Chemistry C, 2016, 4(32): 7554–7562.CrossRefGoogle Scholar
  23. [23]
    C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of ag with the stability of Au,” Journal of the American Chemical Society, 2014, 136(20): 7474–7479.CrossRefGoogle Scholar
  24. [24]
    A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Boston, United States: Artech House, 2005.zbMATHGoogle Scholar
  25. [25]
    E. D. Palik and G. Ghosh, Handbook of optical constants of solids. San Diego, United States: Academic Press, 1998.Google Scholar
  26. [26]
    T. Liu, W. Wang, F. Liu, and S. Wang, “Photochemical deposition fabricated highly sensitive localized surface plasmon resonance based optical fiber sensor,” Optics Communications, 2018, 427: 301–305.ADSCrossRefGoogle Scholar
  27. [27]
    J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, N. P. Zaca-Morã, N. D. Villegas-Hernã, and V. F. Chã, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors, 2014, 14(10): 18701–18710.CrossRefGoogle Scholar
  28. [28]
    N. A. Cinel, B. Serkan, and Z. Ekmel, “Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance,” Optics Express, 2012, 20(3): 2587.ADSCrossRefGoogle Scholar
  29. [29]
    J. P. Chen, S. Shi, R. X. Su, W. Qi, R. L. Huang, M. F. Wang, et al., “Optimization and application of reflective lspr optical fiber biosensors based on silver nanoparticles,” Sensors, 2015, 15(6): 12205–12217.CrossRefGoogle Scholar
  30. [30]
    O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Analytical Methods, 2018, 10(32): 3906–3925.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yiwen Tang
    • 1
  • Hui Yuan
    • 1
  • Jiangping Chen
    • 1
  • Qiguo Xing
    • 1
  • Rongxin Su
    • 1
    • 2
    Email author
  • Wei Qi
    • 1
    • 2
  • Zhimin He
    • 1
  1. 1.State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations