Photonic Sensors

, Volume 9, Issue 2, pp 126–134 | Cite as

High Sensitive Refractive Index Sensor Based on Cladding Etched Photonic Crystal Fiber Mach-Zehnder Interferometer

  • Haifeng Du
  • Xiaoyan Sun
  • Youwang HuEmail author
  • Xinran Dong
  • Jianhang Zhou
Open Access


A high sensitive refractive index sensor based on the cladding etched photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) is proposed, which is spliced a section of photonic crystal fiber between two single modes fibers (SMFs).The interference fringe of the MZI shifts with the variation of the ambient refractive index (RI). It is found that the RI sensitivity slightly decrease with an increase in the interference length. The sensitivities of MZI with 35 mm PCF, 40 mm PCF, and 45 mm PCF are 106.19 nm/RIU, 93.33 nm/RIU, and 73.64 nm/RIU, respectively, in the range of 1.333 to 1.381. After etched, the RI sensitivity of the MZI could be improved obviously. The RI sensitivities of the MZI with 35 mm PCF are up to 211.53 nm/RIU and 359.37 nm/RIU when the cladding diameter decreases to 112 μm and 91 μm, respectively. Moreover, the sensor is insensitive to temperature, and the measured sensitivity is only 9.21 pm/°C with the range from 20°C to 500°C. In addition, the sensor has advantage of simple fabrication, low cost, and high RI sensitivity.


Refractive index sensor Mach-Zehnder interferometer photonic crystal fiber hydrofluoric acid 



This research work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51475482, 51875584, 51875585, and 51475481), the National Key R&D Program of China (Grant Nos. 2017YFB1104800 and 2018YFB1107803), and the Fundamental Research Funds for the Central Universities of Central South University.


  1. [1]
    X. Y. Sun, X. R. Dong, Y. W. Hu, H. T. Li, D. K. Chu, J. Y. Zhou, et al., “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sensors & Actuators A: Physical, 2015, 230: 111–116.CrossRefGoogle Scholar
  2. [2]
    J. H. Wo, G. H. Wang, Y. Cui, Q. Sun, R. B. Liang, P. Shum, et al., “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Optics Letters, 2012, 37(1): 67–69.ADSCrossRefGoogle Scholar
  3. [3]
    Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, et al., “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensors & Actuators B: Chemical, 2016, 225: 213–220.CrossRefGoogle Scholar
  4. [4]
    J. N. Wang and J. L. Tang, “Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing,” Sensors, 2012, 12(3): 2983–2995.CrossRefGoogle Scholar
  5. [5]
    B. Y. Li, L. Jiang, S. M. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Optics & Laser Technology, 2011, 43(8): 1420–1423.ADSCrossRefGoogle Scholar
  6. [6]
    F. Zou, Y. Q. Liu, C. L. Deng, Y. H. Dong, S. Zhu, and T. Y. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Optics Express, 2015, 23(2): 1114–1124.ADSCrossRefGoogle Scholar
  7. [7]
    W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, 2005, 86(15): 151122–1–151122–3.ADSCrossRefGoogle Scholar
  8. [8]
    T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Optics Express, 2008, 16(8): 5764–5769.ADSCrossRefGoogle Scholar
  9. [9]
    X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, et al., “Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Optics & Laser Technology, 2016, 77: 11–15.ADSCrossRefGoogle Scholar
  10. [10]
    P. Lu, L. Q. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Applied Physics Letters, 2009, 94(13): 131110–1–131110–3.ADSCrossRefGoogle Scholar
  11. [11]
    X. R. Dong, Z. Xie, Y. X. Song, K. Yin, D. K. Chu, and J. A. Duan, “High temperature-sensitivity sensor based on long period fiber grating inscribed with femtosecond laser transversal-scanning method,” Chinese Optics Letters, 2017, 15(9): 090602–1–090602–5.ADSCrossRefGoogle Scholar
  12. [12]
    X. R. Dong, Z. Xie, C. Zhou, K. Yin, Z. Luo, and J. A. Duan, “Temperature sensitivity enhancement of platinum-nanoparticle-coated long period fiber gratings fabricated by femtosecond laser,” Applied Optics, 2017, 56(23): 6549–6553.ADSCrossRefGoogle Scholar
  13. [13]
    T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.ADSCrossRefGoogle Scholar
  14. [14]
    Y. Zhao, X. G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensors & Actuators B: Chemical, 2015, 221: 406–410.CrossRefGoogle Scholar
  15. [15]
    D. Wu, Y. Zhao, and J. Li, “PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell,” Sensors & Actuators B: Chemical, 2015, 213: 1–4.CrossRefGoogle Scholar
  16. [16]
    Y. Zhao, F. Xia, H. F. Hu, and M. Q. Chen, “A novel photonic crystal fiber Mach-Zehnder interferometer for enhancing refractive index measurement sensitivity,” Optics Communications, 2017, 402: 368–374.ADSCrossRefGoogle Scholar
  17. [17]
    D. Pawar and S. N. Kale, “Birefringence manipulation in tapered polarization-maintaining photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing,” Sensors & Actuators A: Physical, 2016, 252: 180–184.CrossRefGoogle Scholar
  18. [18]
    Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sensors & Actuators B: Chemical, 2014, 202: 1097–1102.CrossRefGoogle Scholar
  19. [19]
    L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sensors and Actuators B: Chemical, 2016, 236: 537–545.CrossRefGoogle Scholar
  20. [20]
    T. Zhu, F. F. Xiao, L. C. Xu, M. Liu, M. Deng, and K. S. Chiang, “Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber,” Optics Express, 2012, 20(22): 24465–24471.ADSCrossRefGoogle Scholar
  21. [21]
    D. K. Sharma and A. Sharma. “Mode field expansion in index-guiding microstructured optical fibers,” SPIE, 2013, 8794: 87942A-1–87942A-6.ADSGoogle Scholar
  22. [22]
    L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Optics Express, 2012, 20(10): 11109–11120.ADSCrossRefGoogle Scholar
  23. [23]
    Y. Zhao, M. Q. Chen, F. Xia, and H. F. Hu, “Spectrum online-tunable Mach-Zehnder interferometer based on step-like tapers and its refractive index sensing characteristics,” Optics Communications, 2017, 403: 143–149.ADSCrossRefGoogle Scholar
  24. [24]
    L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sensors & Actuators B: Chemical, 2017, 242: 673–678.CrossRefGoogle Scholar
  25. [25]
    R. Xiong, H. Y. Meng, Q. Q. Yao, B. Huang, Y. M. Liu, H. C. Xue, et al., “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sensors Journal, 2014, 14(8): 2524–2528.ADSCrossRefGoogle Scholar
  26. [26]
    L. Q. Wang, L. Yang, C. Zhang, C. Y. Miao, J. F. Zhao, and W. Xu, “High sensitivity and low loss open-cavity Mach-Zehnder interferometer based on multimode interference coupling for refractive index measurement,” Optics and Laser Technology, 2019, 109: 193–198.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Haifeng Du
    • 1
  • Xiaoyan Sun
    • 1
  • Youwang Hu
    • 1
    Email author
  • Xinran Dong
    • 1
  • Jianhang Zhou
    • 1
  1. 1.State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina

Personalised recommendations