Advertisement

Photonic Sensors

, Volume 9, Issue 2, pp 189–196 | Cite as

A Coil Constant Calibration Method Based on the Phase-Frequency Response of Alkali Atomic Magnetometer

  • Han Yao
  • Danyue Ma
  • Junpeng Zhao
  • Jixi Lu
  • Ming DingEmail author
Open Access
Regular
  • 93 Downloads

Abstract

We propose an in-situ method to calibrate the coil constants of the optical atomic magnetometer. This method is based on measuring the Larmor precession of spin polarized alkali metal atoms and has been demonstrated on a K-Rb hybrid atomic magnetometer. Oscillation fields of different frequencies are swept on the transverse coil. By extracting the resonance frequency through phase-frequency analysis of electron spin projection, the coil constants are calibrated to be 323.1 ± 0.28 nT/mA, 108 ± 0.04 nT/Ma, and 185.8 ± 1.03 nT/mA along the X, Y, and Z directions, respectively.

Keywords

Optical atomic magnetometer coil constant calibration phase-frequency analysis Larmor precession 

Notes

Acknowledgement

This work received the support of the National Key R&D Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (NSFC) (Grant No. 61227902). Both these two funding agencies give suggestions on selecting the critical technical problems and official financial help on the implementation of experiments.

References

  1. [1]
    I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature, 2003, 422(6932): 596–599.ADSCrossRefGoogle Scholar
  2. [2]
    J. C. Allred, R. N. Lyman, T. Kornack, and M. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Physical Review Letters, 2002, 89(13): 130801–1–130801–4.ADSCrossRefGoogle Scholar
  3. [3]
    Y. Chen, W. Quan, L. H. Duan, Y. Lu, L. W. Jiang, and J. C. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Physical Review A, 2016, 94(52): 052705–1–052705–6.ADSCrossRefGoogle Scholar
  4. [4]
    D. Sheng, S. Li, N. Dural, and M. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Physical Review Letters, 2013, 110(16): 160802–1–160802–5.ADSCrossRefGoogle Scholar
  5. [5]
    T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomedical Optics Express, 2012, 3(5): 981–990.CrossRefGoogle Scholar
  6. [6]
    R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine & Biology, 2012, 57(9): 2619–2632.ADSCrossRefGoogle Scholar
  7. [7]
    T. Wang, D. F. J. Kimball, A. O. Sushkov, D. Aybas, J. W. Blanchard, G. Centers, et al., “Application of spin-exchange relaxation-free magnetometry to the cosmic axion spin precession experiment,” Physics of the Dark Universe, 2018, 19: 27–35.ADSCrossRefGoogle Scholar
  8. [8]
    J. M. Brown, “A new limit on Lorentz- and CPT-violating neutron spin interactions using a potassium-Helium comagnetometer,” Ph.D. dissertation, Princeton University, Princeton, NJ, USA, 2011.Google Scholar
  9. [9]
    Z. C. Ding, J. Yuan, G. F. Lu, Y. Y. Li, and X. W. Long, “Three-axis atomic magnetometer employing longitudinal field modulation,” IEEE Photonics Journal, 2017, 9(5): 5300209–1–5300209–9.Google Scholar
  10. [10]
    H. C. Huang, H. F. Dong, X. Y. Hu, L. Chen, and Y. Gao, “Three-axis atomic magnetometer based on spin precession modulation,” Applied Physics Letters, 2015, 107(18): 227–234.Google Scholar
  11. [11]
    S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. Gruji´c, et al., “Highly stable atomic vector magnetometer based on free spin precession,” Optics Express, 2015, 23(17): 22108–1–22108–12.ADSCrossRefGoogle Scholar
  12. [12]
    H. F. Dong, H. B. Lin, and X. B. Tang, “Atomic-signal-based zero-field finding technique for unshielded atomic vector magnetometer,” IEEE Sensors Journal, 2013, 13(1): 186–189.ADSCrossRefGoogle Scholar
  13. [13]
    Z. M. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Applied Physics Letters, 2006, 89(13): 23575531–1–23575531–8.Google Scholar
  14. [14]
    S. J. Seltzer and M. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Applied Physics Letters, 2004, 85(20): 4804–4806.ADSCrossRefGoogle Scholar
  15. [15]
    H. U. Auster, K. H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. D. Constantinescu, et al., “The THEMIS fluxgate magnetometer,” Space Science Reviews, 2008, 141(1–4): 235–264.ADSCrossRefGoogle Scholar
  16. [16]
    H. Zhang, S. Zou, and X. Y. Chen, “A method for calibrating coil constants by using an atomic spin co-magnetometer,” The European Physical Journal D, 2016, 70(10): 203–1–203–5.ADSCrossRefGoogle Scholar
  17. [17]
    L. L. Chen, B. Q. Zhou, G. Q. Lei, W. F. Wu, J. Wang, Y. Y. Zhai, et al., “A method for calibrating coil constants by using the free induction decay of noble gases,” AIP Advances, 2017, 7(7): 2227–2234.CrossRefGoogle Scholar
  18. [18]
    Y. Li, M. Ding, X. J. Liu, H. W. Cai, J. P. Zhao, and J. C. Fang, “Suppression method of AC-stark shifts in atomic magnetometers,” IEEE Photonics Journal, 2018, 10(5): 5300207–1–5300207–5.Google Scholar
  19. [19]
    J. X. Lu, W. Quan, D. Ming, L. Qi, and J. C. Fang, “Suppression of light shift for high-density alkali-metal atomic magnetometer,” IEEE Sensors, 2018, 99: 2877771–1–2877771–5.Google Scholar
  20. [20]
    M. Romalis, “Hybrid optical pumping of optically dense alkali metal vapor without quenching gas,” Physical Review Letters, 2010, 105(24): 243001–1–243001–4.ADSCrossRefGoogle Scholar
  21. [21]
    Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances, 2012, 2(3): 032127–1–032127–4.ADSCrossRefGoogle Scholar
  22. [22]
    F. Bloch, W. W. Hansen, and M. E. Packard, “The nuclear induction experiment,” Physics Review, 1946, 70(7–8): 474–485.ADSCrossRefGoogle Scholar
  23. [23]
    S. Seltzer, “Developments in alkali metal atomic magnetometry,” Ph.D. dissertation, Princeton University, Princeton, NJ, USA, 2008.Google Scholar
  24. [24]
    J. Fang, T. Wang, W. Quan, H. Yuan, Y. Li, H. Zhang, et al., “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Review of Scientific Instruments, 2014, 85(6): 063108–1–063108–7.ADSCrossRefGoogle Scholar
  25. [25]
    L. L. Chen, B. Q. Zhou, G. Q. Lei, W. F. Wu, Y. Y. Zhai, Z. Wang, et al., “A method for measuring the spin polarization of 129Xe by using an atomic magnetometer,” AIP Advances, 2017, 7: 085221–1–085221–8.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Han Yao
    • 1
  • Danyue Ma
    • 1
  • Junpeng Zhao
    • 1
  • Jixi Lu
    • 1
  • Ming Ding
    • 1
    Email author
  1. 1.School of Instrumentation Science and Opto-electronics EngineeringBeihang UniversityBeijingChina

Personalised recommendations