Advertisement

Photonic Sensors

, Volume 9, Issue 2, pp 162–169 | Cite as

Influence of Internal Stresses in Few-Mode Fiber on the Thermal Characteristics of Regenerated Gratings

  • Nurul Asha Mohd NazalEmail author
  • Kok Sing Lim
  • Yen Sian Lee
  • Muhammad Aizi Mat Salim
  • Harith Ahmad
Open Access
Regular
  • 217 Downloads

Abstract

The pre-treatment of few-mode fibers (FMFs) has been successfully done with CO2 laser. The wavelength difference, Δλ between the two resonant wavelengths in the few-mode fiber Bragg grating (FMFBG) varies with temperature increment during the annealing process. The results show that the treated fibers with lower stresses have lower thermal sensitivity in Δλ than that of non-treated fiber. However, the treated fibers produce FMFBGs with better thermal durability and regeneration ratio. It is conceived that the presence of those stresses in the pristine fiber is responsible for the high thermal sensitivity in Δλ. The thermal relaxation of stresses and structural rearrangement during the thermal annealing process are responsible for the degradation of the strength and resilience of the regenerated grating.

Keywords

Regenerated fiber Bragg grating few-mode fiber thermal stress relaxation CO2 laser annealing thermal resilience 

Notes

Acknowledgement

This work was performed within an Optical Fibers Sensors and Lasers Laboratory. The first author acknowledges all postgraduates students from the lab for general support. This work was supported by the Fundamental Research Grant Scheme (FRGS) (Grant No. FP033-2017A).

References

  1. [1]
    T. C. Hsiao, T. S. Hsieh, Y. C. Chen, S. C. Huang, and C. C. Chiang, “Metal-coated fiber Bragg grating for dynamic temperature sensor,” Optik, 2016, 127(22): 10740–10745.ADSCrossRefGoogle Scholar
  2. [2]
    Y. L. Li, K. Yang, and X. W. Li, “Temperature sensing characteristics of metal coated FBG during dynamic cooling process,” Optical Fiber Technology, 2018, 45: 368–375.ADSCrossRefGoogle Scholar
  3. [3]
    D. S. Gunawardena, M. H. Lai, K. S. Lim, A. Malekmohammadi, and H. Ahmad, “Fabrication of thermal enduring FBG sensor based on thermal induced reversible effect,” Sensors and Actuators A: Physical, 2016, 242: 111–115.CrossRefGoogle Scholar
  4. [4]
    J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors, 2008, 8(10): 6448–6452.CrossRefGoogle Scholar
  5. [5]
    S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors, 2012, 12(2): 1898–1918.CrossRefGoogle Scholar
  6. [6]
    M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” Journal of the Optical Society of America B, 2002, 19(8): 1759–1765.ADSCrossRefGoogle Scholar
  7. [7]
    B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sensors Journal, 2007, 7(4): 586–591.ADSCrossRefGoogle Scholar
  8. [8]
    S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Optics Letters, 2008, 33(16): 1917–1919.ADSCrossRefGoogle Scholar
  9. [9]
    H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400–using new class of multimaterial glass-based photosensitive fiber,” Optics Letters, 2014, 39(22): 6438–6441.ADSCrossRefGoogle Scholar
  10. [10]
    N. A. M. Nazal, K. S. Lim, M. K. A. Zaini, H. Z. Yang, and H. Ahmad, “Formation of enhanced regenerated grating in few-mode fiber by CO2 laser pretreatment,” Applied Optics, 2017, 56(36): 9882–9887.ADSCrossRefGoogle Scholar
  11. [11]
    A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107 Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Optics Express, 2011, 19(9): 8808–8814.ADSCrossRefGoogle Scholar
  12. [12]
    A. Li, A. Al Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber,” Journal of Lightwave Technology, 2012, 30(4): 634–640.ADSCrossRefGoogle Scholar
  13. [13]
    C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, et al., “Two mode transmission at 2–100Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Optics Express, 2011, 19(17): 16593–16600.ADSCrossRefGoogle Scholar
  14. [14]
    B. Y. Kim, “Few-mode fiber devices,” Optical Fiber Sensors, 1988, 2: 1–463.Google Scholar
  15. [15]
    A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Optics Express, 2015, 23(2): 1139–1150.ADSCrossRefGoogle Scholar
  16. [16]
    N. A. M. Nazal, M. H. Lai, K. S. Lim, D. S. Gunawardena, W. Y. Chong, H. Z. Yang, et al., “Demarcation energy properties of regenerated fiber Bragg grating sensors in few-mode fibers,” Optics Applicata, 2018, 48(2): 263–271.Google Scholar
  17. [17]
    P. Chu and R. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” Journal of Lightwave Technology, 1984, 2(5): 650–662.ADSCrossRefGoogle Scholar
  18. [18]
    K. S. Lim, Y. H. Zhou, W. Y. Chong, C. Y. Ken, C. H. Lim, N. M. Ali, et al., “Axial contraction in etched optical fiber due to internal stress reduction,” Optics Express, 2013, 21(3): 2551–2562.ADSCrossRefGoogle Scholar
  19. [19]
    M. K. A. Zaini, Y. S. Lee, K. S. Lim, N. A. M. Nazal, M. H. Zohari, and H. Ahmad, “Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process,” Journal of the Optical Society of America B, 2017, 34(9): 1894–1898.CrossRefGoogle Scholar
  20. [20]
    T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” Journal of Lightwave Technology, 2000, 18(2): 230–235.ADSCrossRefGoogle Scholar
  21. [21]
    D. Ganziy, O. Jespersen, G. Woyessa, B. Rose, and O. Bang, “Dynamic gate algorithm for multimode fiber Bragg grating sensor systems,” Applied Optics, 2015, 54(18): 5657–5661.ADSCrossRefGoogle Scholar
  22. [22]
    M. H. Lai, K. S. Lim, D. S. Gunawardena, and H. Z. Yang, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Optics Letters, 2015, 40(5): 748–751.ADSCrossRefGoogle Scholar
  23. [23]
    I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Optics Communications, 2008, 281(1): 75–79.ADSCrossRefGoogle Scholar
  24. [24]
    B. H. Kim, Y. Park, T. J. Ahn, D. Kim, B. H. Lee, Y. Chung, et al., “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Optics Letters, 2001, 26(21): 1657–1659.ADSCrossRefGoogle Scholar
  25. [25]
    J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” Journal of Applied Physics, 1974, 45(12): 5324–5329.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Nurul Asha Mohd Nazal
    • 1
    Email author
  • Kok Sing Lim
    • 1
  • Yen Sian Lee
    • 1
  • Muhammad Aizi Mat Salim
    • 2
  • Harith Ahmad
    • 1
  1. 1.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Laser Center, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations