Advertisement

Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities

  • Yuntuan FangEmail author
  • Xiaoxue Li
Open Access
Regular
  • 50 Downloads

Abstract

Sub-nanometer displacement measurement is still a challenge in the current sensor field. In this study, a new type of displacement sensor is designed which is based on the coupling effect of two balanced gain and loss resonators. The optical properties of the sensor have been studied through the coupled mode theory and scatter matrix. The pole effect in the coupling system can be used to measure the sub-nanometer displacement. The resolution of the sensor can reach 0.001 nm over a dynamic range of 20 nm. The sensor has the highest sensitivity within the range of one nanometer. The environmental disturbance and structure parameter perturbation have been demonstrated to make trivial effect on the sensor performance.

Keywords

Displacement sensor PT-symmetry pole 

References

  1. [1]
    H. I. Rasool, P. R. Wilkinson, A. Z. Steig, and J. K. Gimzewski, “A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy,” The Review of Scientific Instruments, 2010, 81(2): 023703-1‒023703-10.ADSCrossRefGoogle Scholar
  2. [2]
    B. K. Nowakowski, D. T. Smith, and S. T. Smith, “Highly compact fiber Fabry-Perot interferometer: a new instrument design,” The Review of ScientificInstruments, 2016, 87(11): 115102-1‒115102-8.ADSGoogle Scholar
  3. [3]
    F. G. Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Applied Physics Letters, 2014, 104: 221111-1‒221111-5.ADSCrossRefGoogle Scholar
  4. [4]
    K. Peng, X. K. Liu, Z. R. Chen, Z. C. Yu, and H. J. Pu, “Sensing mechanism and error analysis of a capacitive long-range displacement nanometer sensor based on time grating,” IEEE Sensors Journal, 2017, 17(6): 1596–1607.ADSGoogle Scholar
  5. [5]
    C. C. Wu, C. H. Liao, Y. Z. Chen, and J. S. Yang, “Common-path laser encoder with Littrow configuration,” Sensors & Actuators A: Physical, 2013, 193(4): 69–78.CrossRefGoogle Scholar
  6. [6]
    X. L. Zhou and Q. X. Yu, “Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement,” IEEE Sensors Journal, 2011, 11(7): 1602–1606.ADSGoogle Scholar
  7. [7]
    C. Yang and S. O. Oyadiji, “Development of two-layer multiple transmitter fibre optic bundle displacement sensor and application in structural health monitoring,” Sensors and Actuators A: Physical, 2016, 244(15): 1–14.Google Scholar
  8. [8]
    Y. Yang, D. Tian, K. Chen, X. L. Zhou, Z. F. Gong, and Q. X. Yu, “A fiber-optic displacement sensor using the spectral demodulation method,” Journal of Lightwave Technology, 2018, 36(17): 3666–3671.ADSCrossRefGoogle Scholar
  9. [9]
    T. P. Dao, N. L. Ho, T. T. Nguyen, H. G. Le, P. T. Thang, H. T. Pham, et al., “Analysis and optimization of a micro displacement sensor for compliant microgripper,” Microsystem Technologies, 2017, 23(12): 5375–5395.CrossRefGoogle Scholar
  10. [10]
    T. P. Dao and S. C. Huang, “Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper,” Microsystem Technologies, 2016, 23(2): 441–456.CrossRefGoogle Scholar
  11. [11]
    C. Yang and S. O. Oyadiji, “Theoretical and experimental study of self-reference intensity-modulated plastic fibre optic linear array displacement sensor,” Sensors & Actuators A: Physical, 2015, 222: 67–79.CrossRefGoogle Scholar
  12. [12]
    W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, et al., “Measurement technologies for precision positioning,” CIRP Annals, 2015, 64(2): 773–796.Google Scholar
  13. [13]
    A. J. Fleming, “A review of nanometer resolution position sensors-operation and performance,” Sensors and Actuators A: Physical, 2013, 190: 106–126.CrossRefGoogle Scholar
  14. [14]
    T. Grotjohann, I. Testa, M. Leutenegger, H. Leutenegger, H. Bock, N. T. Urban et al., “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature, 2011, 478: 204–208.ADSCrossRefGoogle Scholar
  15. [15]
    J. Baxter, “Super-resolution imaging: beyond the limit,” Nature Photonics, 2012, 6(6): 273–275.ADSGoogle Scholar
  16. [16]
    G. Doyen, D. Drakova, V. Mujica, and M. Scheffler, “Theory of the scanning tunneling microscope,” Physica Status Solidi, 1992, 131: 107–108.ADSCrossRefGoogle Scholar
  17. [17]
    S. T. Souza, E. J. S. Fonseca, C. Jacinto, N. G. C. Astrath, T. P. Rodrigues, and L. C. Malacarne, “Direct measurement of photo-induced nanoscale surface displacement in solids using atomic force microscopy,” Optical Materials, 2015, 48: 71–74.ADSCrossRefGoogle Scholar
  18. [18]
    L. Feng, R. E. Ganainy, and L. Ge, “Non-hermitian photonics based on parity–time symmetry,” Nature Photonics, 2017, 11: 752–762.ADSCrossRefGoogle Scholar
  19. [19]
    Z. J. Wong, Y. L. Xu, J. Kim, K. O′Brien, Y. Wang, L. Feng, et al., “Lasing and anti-lasing in a single cavity,” Nature Photonics, 2016, 10(12): 796–801.ADSCrossRefGoogle Scholar
  20. [20]
    H. Hodaei, A. U. Hassan, S. Wittek, H. G. Gracia, R. E. Ganainy, D. N. Christodoulides, et al., “Enhanced sensitivity at higher-order exceptional points,” Nature, 2017, 548: 187–191.ADSCrossRefGoogle Scholar
  21. [21]
    P. Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M. C. Cheng, R. E. Ganainy, et al., “Generalized parity–time symmetry condition for enhanced sensor telemetry,” Nature Electronics, 2018, 1: 297–304.CrossRefGoogle Scholar
  22. [22]
    L. Chang, X. S. Jiang, S. Y. Hua, C. Yang, J. M. Wen, L. Jiang, et al., “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nature Photonics, 2014, 8: 524–529.ADSCrossRefGoogle Scholar
  23. [23]
    Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Physical Review Letters, 2011, 106: 093902-1‒093902-4.ADSCrossRefGoogle Scholar
  24. [24]
    L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Physical Review A, 2012, 85: 023802-1‒023802-10.ADSCrossRefGoogle Scholar
  25. [25]
    W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” Journal of Optics A: Pure and Applied Optics, 2006, 8(4): S87–S93.ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Yeh, Optical waves in layered media. New York, USA: John Wiley & Sons, 2005: 1–416.Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Computer Science and Telecommunication EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations