Photonic Sensors

, Volume 9, Issue 1, pp 60–68 | Cite as

Resonant Light Scattering Toward Optical Fiber Humidity Sensors

  • Mahboubeh Dehghani SanijEmail author
  • Abolfazl Bahrampour
  • Ali Reza Bahrampour
Open Access


The deposition of tetrakis (4-sulonatophenyl) porphyrin (TPPS) thin film on optical fibers presents many possibilities for sensing applications. The J-form aggregation with a narrow and sharp spectral feature at about 490 nm and its sensitivity to humidity have been discussed; a fast change of wavelength occurs according with variation in the humidity level. The reproducibility and high sensitivity of TPPS-coated fibers, along with the capabilities of optical fibers, suggest the device as a good candidate for humidity sensing in harsh environments.


Humidity chemical porphyrin-based chemical optical fiber sensor 


  1. [1]
    T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sensors and Actuators A: Physical, 2008, 144(2): 280–295.Google Scholar
  2. [2]
    M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Applied Physics Letters, 2004, 85(22): 5349–5351.ADSGoogle Scholar
  3. [3]
    A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, et al., “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Applied Physics Letters, 2005, 87(23): 234105-1–234105-3.ADSGoogle Scholar
  4. [4]
    S. Otsuki, K. Adachi, and T. Taguchi, “A novel fibre-optic gas sensing arrangement based on an air gap setting and an application to optical detection of humidity,” Analytical Sciences, 1998, 14(3): 633–635.Google Scholar
  5. [5]
    S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion (TM) membrane,” Analytica Chimica Acta, 2001, 448(1–2): 1–8.Google Scholar
  6. [6]
    S. Q. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fibre sensor using tailored porous sol-gel fiber core,” IEEE Sensors Journal, 2004, 4(3): 322–328.ADSGoogle Scholar
  7. [7]
    M. Bedoya, M. T. Díez, M. C. M. Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection,” Sensors and Actuators B: Chemical, 2006, 113(2): 573–581.Google Scholar
  8. [8]
    S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor for real-time humidity monitoring,” Measurement Science and Technology, 2003, 14(6): 746–750.ADSGoogle Scholar
  9. [9]
    F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sensors and Actuators B: Chemical, 2003, 96(1–2): 165–172.Google Scholar
  10. [10]
    A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127–4132.ADSGoogle Scholar
  11. [11]
    A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sensors Journal, 2004, 4(1): 52–56.ADSGoogle Scholar
  12. [12]
    L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Optics Letters, 2004, 29(11): 1191–1193.ADSGoogle Scholar
  13. [13]
    J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonics Technology Letters, 2006, 18(8): 935–937.ADSGoogle Scholar
  14. [14]
    P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Optics Letters, 2002, 27(16): 1385–1387.ADSGoogle Scholar
  15. [15]
    S. Luo, Y. Liu, A. Sucheta, M. Evans, and R. V. Tassell, “Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring,” Advanced Sensor Systems and Applications, 2002, 4920: 193–205.ADSGoogle Scholar
  16. [16]
    K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors and Actuators B: Chemical, 2005, 110(2): 335–341.Google Scholar
  17. [17]
    M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating,” Applied Optics, 2006, 45(19): 4567–4571.ADSGoogle Scholar
  18. [18]
    S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for detection of toxic gases,” Nature Chemistry, 2009, 1(7): 562–567.ADSGoogle Scholar
  19. [19]
    K. M. Kadish, K. M. Smith, and R. Guilard, Handbook of the Porphyrin: inorganic, organometallic and coordination chemistry. Amsterdam, Netherlands: Elsevier, 2000.Google Scholar
  20. [20]
    X. B. Zhang, Z. Z. Li, C. C. Guo, S. H. Chen, G. L. Shen, and R. Q. Yu, “Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine,” Analytica Chimica Acta, 2001, 439(1): 65–71.Google Scholar
  21. [21]
    X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Analytical Chemistry, 2002, 74(4): 821–825.Google Scholar
  22. [22]
    R. Ni, R. B. Tong, C. C. Guo, G. L. Shen, and R. Q. Yu, “An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid,” Talanta, 2004, 63(2): 251–257.Google Scholar
  23. [23]
    G. Huyang, J. Canning, M. L. Aslund, D. Stocks, T. Khoury, and M. J, Crossley, “Evaluation of optical fiber microcell reactor for use in remote acid sensing,” Optics Letters, 2010, 35(6): 817–819.ADSGoogle Scholar
  24. [24]
    R. Selyanchyn, S. Korposh, W. Yasukochi, and S. W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors & Transducers, 2011, 125(2): 54–67.Google Scholar
  25. [25]
    S. Stelitano, G. De Luca, S. Savasta, and S. Patané, “Polarized emission from high quality microcavity based on active organic layered domains,” Applied Physics Letters, 2008, 93(19): 193302-1–193302-3.ADSGoogle Scholar
  26. [26]
    K. Araki, M. J. Wagner, and M. S. Wrighton, “Layer-by-layer growth of electrostatically assembled multilayer porphyrin films,” Langmuir, 1996, 12(22): 5393–5398.Google Scholar
  27. [27]
    Z. J. Zhang, S. F. Hou, Z. H. Zhu, and Z. F. Liu, “Preparation and characterization of a porphyrin self-assembled monolayer with a controlled orientation on gold,” Langmuir, 2000, 16(2): 537–540.Google Scholar
  28. [28]
    L. M. Scolaro, A. Romeo, M. A. Castriciano, G. De Luca, S. Patanè, and N. Micali, “Porphyrin deposition induced by UV irradiation,” Journal of the American Chemical Society, 2003, 125(8): 2040–2041.Google Scholar
  29. [29]
    G. D. Luca, G. Pollicino, A. Romeo, S. Patanè, and L. M. Scolaro, “Control over the optical and morphological properties of UV-deposited porphyrin structures,” Chemistry of Materials, 2006, 18(23): 5429–5436.Google Scholar
  30. [30]
    G. D. Luca, G. Pollicino, A. Romeo, and L. M. Scolaro, “Sensing behavior of tetrakis (4-sulfonatophenyl) porphyrin thin films,” Chemistry of Materials, 2006, 18(8): 2005–2007.Google Scholar
  31. [31]
    D. P. Bhopate, K. Kim, P. G. Mahajan, A. H. Gore, S. R. Patil, S. M. Majhi, et al., “Fluorescent chemosensor for quantitation of multiple atmospheric gases,” Journal of Nanomed Nanotechnol, 2017, 8(2): 1–9.Google Scholar
  32. [32]
    A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Borriello, A. Cutolo, et al., “Porphyrin thin films on fibre optic probes through UV-light induced deposition,” Optics & Laser Technology, 2013, 49: 279–283.ADSGoogle Scholar
  33. [33]
    A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Cutolo, L. M. Scolaro, et al., “Sensing characteristics to acid vapors of a TPPS coated fiber optic: a preliminary analysis,” World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2012, 6(11): 989–992.Google Scholar
  34. [34]
    G. De Luca, A. Romeo, V. Villari, N. Micali, I. Foltran, E. Foresti, et al., “Self-organizing functional materials via ionic self assembly: porphyrins H- and J-aggregates on synthetic chrysotile nanotubes,” Journal of the American Chemical Society, 2009, 131(20): 6920–6921.Google Scholar
  35. [35]
    G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angewandte Chemie, 1936, 49: 563–564.Google Scholar
  36. [36]
    G. Scheibe, “Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache,” Angewandte Chemie, 1937, 50(11): 212–219.Google Scholar
  37. [37]
    E. E. Jelley, “Spectral absorption and fluorescence of dyes in the molecular state,” Nature, 1936, 138(3502): 1009–1010.ADSGoogle Scholar
  38. [38]
    J. S. Briggs and A. Herzenberg, “Sum rules for the vibronic spectra of helical polymers,” Journal of Physics B: Atomic and Molecular Physics, 1970, 3(12): 1663–1676.ADSGoogle Scholar
  39. [39]
    F. C. Spano and C. Silva, “H-and J-aggregate behavior in polymeric semiconductors,” Annual Review of Physical Chemistry, 2014, 65: 477–500.ADSGoogle Scholar
  40. [40]
    M. Sauer and J. Hofkens, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. Hoboken, New Jersey, USA: John Wiley & Sons, 2010: 1–290.Google Scholar
  41. [41]
    A. Eisfeld and J. S. Briggs, “The J- and H-bands of organic dye aggregates,” Chemical Physics, 2006, 324(2–3): 376–384.Google Scholar
  42. [42]
    R. H. Tredgold, “Langmuir-blodgett films: organic monolayer imaged,” Nature, 1985: 313(6001): 348–348.ADSGoogle Scholar
  43. [43]
    K. M. Lenahan, Y. X. Wang, Y. Liu, R. O. Claus, J. R. Heflin, D. Marciu, et al., “Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology,” Advanced Materials, 1998, 10(11): 853–855.Google Scholar
  44. [44]
    A. Bahrampour, “New hollow core fiber design and porphyrin thin film deposition method towards enhanced optical fiber sensors,” Ph.D. dissertation, University of Naples, Italy, 2013.Google Scholar
  45. [45]
    R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, et al., “Aggregation of meso-substituted water-soluble porphyrins,” Journal of the American Chemical Society, 1972, 94(13): 4511–4517.Google Scholar
  46. [46]
    P. J. Collings, E. J. Gibbs, T. E. Starr, O. Vafek, C. Yee, L. A. Pomerance, et al., “Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores,” The Journal of Physical Chemistry B, 1999, 103(40): 8474–8481.Google Scholar
  47. [47]
    A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Applied Optics, 2013, 52(6): 1317–1324.ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mahboubeh Dehghani Sanij
    • 1
    Email author
  • Abolfazl Bahrampour
    • 2
  • Ali Reza Bahrampour
    • 2
  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations