Advertisement

Photonic Sensors

, Volume 9, Issue 1, pp 60–68 | Cite as

Resonant Light Scattering Toward Optical Fiber Humidity Sensors

  • Mahboubeh Dehghani SanijEmail author
  • Abolfazl Bahrampour
  • Ali Reza Bahrampour
Open Access
Regular
  • 58 Downloads

Abstract

The deposition of tetrakis (4-sulonatophenyl) porphyrin (TPPS) thin film on optical fibers presents many possibilities for sensing applications. The J-form aggregation with a narrow and sharp spectral feature at about 490 nm and its sensitivity to humidity have been discussed; a fast change of wavelength occurs according with variation in the humidity level. The reproducibility and high sensitivity of TPPS-coated fibers, along with the capabilities of optical fibers, suggest the device as a good candidate for humidity sensing in harsh environments.

Keywords

Humidity chemical porphyrin-based chemical optical fiber sensor 

References

  1. [1]
    T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sensors and Actuators A: Physical, 2008, 144(2): 280–295.Google Scholar
  2. [2]
    M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Applied Physics Letters, 2004, 85(22): 5349–5351.ADSGoogle Scholar
  3. [3]
    A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, et al., “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Applied Physics Letters, 2005, 87(23): 234105-1–234105-3.ADSGoogle Scholar
  4. [4]
    S. Otsuki, K. Adachi, and T. Taguchi, “A novel fibre-optic gas sensing arrangement based on an air gap setting and an application to optical detection of humidity,” Analytical Sciences, 1998, 14(3): 633–635.Google Scholar
  5. [5]
    S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion (TM) membrane,” Analytica Chimica Acta, 2001, 448(1–2): 1–8.Google Scholar
  6. [6]
    S. Q. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fibre sensor using tailored porous sol-gel fiber core,” IEEE Sensors Journal, 2004, 4(3): 322–328.ADSGoogle Scholar
  7. [7]
    M. Bedoya, M. T. Díez, M. C. M. Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection,” Sensors and Actuators B: Chemical, 2006, 113(2): 573–581.Google Scholar
  8. [8]
    S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor for real-time humidity monitoring,” Measurement Science and Technology, 2003, 14(6): 746–750.ADSGoogle Scholar
  9. [9]
    F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sensors and Actuators B: Chemical, 2003, 96(1–2): 165–172.Google Scholar
  10. [10]
    A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127–4132.ADSGoogle Scholar
  11. [11]
    A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sensors Journal, 2004, 4(1): 52–56.ADSGoogle Scholar
  12. [12]
    L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Optics Letters, 2004, 29(11): 1191–1193.ADSGoogle Scholar
  13. [13]
    J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonics Technology Letters, 2006, 18(8): 935–937.ADSGoogle Scholar
  14. [14]
    P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Optics Letters, 2002, 27(16): 1385–1387.ADSGoogle Scholar
  15. [15]
    S. Luo, Y. Liu, A. Sucheta, M. Evans, and R. V. Tassell, “Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring,” Advanced Sensor Systems and Applications, 2002, 4920: 193–205.ADSGoogle Scholar
  16. [16]
    K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors and Actuators B: Chemical, 2005, 110(2): 335–341.Google Scholar
  17. [17]
    M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating,” Applied Optics, 2006, 45(19): 4567–4571.ADSGoogle Scholar
  18. [18]
    S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for detection of toxic gases,” Nature Chemistry, 2009, 1(7): 562–567.ADSGoogle Scholar
  19. [19]
    K. M. Kadish, K. M. Smith, and R. Guilard, Handbook of the Porphyrin: inorganic, organometallic and coordination chemistry. Amsterdam, Netherlands: Elsevier, 2000.Google Scholar
  20. [20]
    X. B. Zhang, Z. Z. Li, C. C. Guo, S. H. Chen, G. L. Shen, and R. Q. Yu, “Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine,” Analytica Chimica Acta, 2001, 439(1): 65–71.Google Scholar
  21. [21]
    X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Analytical Chemistry, 2002, 74(4): 821–825.Google Scholar
  22. [22]
    R. Ni, R. B. Tong, C. C. Guo, G. L. Shen, and R. Q. Yu, “An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid,” Talanta, 2004, 63(2): 251–257.Google Scholar
  23. [23]
    G. Huyang, J. Canning, M. L. Aslund, D. Stocks, T. Khoury, and M. J, Crossley, “Evaluation of optical fiber microcell reactor for use in remote acid sensing,” Optics Letters, 2010, 35(6): 817–819.ADSGoogle Scholar
  24. [24]
    R. Selyanchyn, S. Korposh, W. Yasukochi, and S. W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors & Transducers, 2011, 125(2): 54–67.Google Scholar
  25. [25]
    S. Stelitano, G. De Luca, S. Savasta, and S. Patané, “Polarized emission from high quality microcavity based on active organic layered domains,” Applied Physics Letters, 2008, 93(19): 193302-1–193302-3.ADSGoogle Scholar
  26. [26]
    K. Araki, M. J. Wagner, and M. S. Wrighton, “Layer-by-layer growth of electrostatically assembled multilayer porphyrin films,” Langmuir, 1996, 12(22): 5393–5398.Google Scholar
  27. [27]
    Z. J. Zhang, S. F. Hou, Z. H. Zhu, and Z. F. Liu, “Preparation and characterization of a porphyrin self-assembled monolayer with a controlled orientation on gold,” Langmuir, 2000, 16(2): 537–540.Google Scholar
  28. [28]
    L. M. Scolaro, A. Romeo, M. A. Castriciano, G. De Luca, S. Patanè, and N. Micali, “Porphyrin deposition induced by UV irradiation,” Journal of the American Chemical Society, 2003, 125(8): 2040–2041.Google Scholar
  29. [29]
    G. D. Luca, G. Pollicino, A. Romeo, S. Patanè, and L. M. Scolaro, “Control over the optical and morphological properties of UV-deposited porphyrin structures,” Chemistry of Materials, 2006, 18(23): 5429–5436.Google Scholar
  30. [30]
    G. D. Luca, G. Pollicino, A. Romeo, and L. M. Scolaro, “Sensing behavior of tetrakis (4-sulfonatophenyl) porphyrin thin films,” Chemistry of Materials, 2006, 18(8): 2005–2007.Google Scholar
  31. [31]
    D. P. Bhopate, K. Kim, P. G. Mahajan, A. H. Gore, S. R. Patil, S. M. Majhi, et al., “Fluorescent chemosensor for quantitation of multiple atmospheric gases,” Journal of Nanomed Nanotechnol, 2017, 8(2): 1–9.Google Scholar
  32. [32]
    A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Borriello, A. Cutolo, et al., “Porphyrin thin films on fibre optic probes through UV-light induced deposition,” Optics & Laser Technology, 2013, 49: 279–283.ADSGoogle Scholar
  33. [33]
    A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Cutolo, L. M. Scolaro, et al., “Sensing characteristics to acid vapors of a TPPS coated fiber optic: a preliminary analysis,” World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2012, 6(11): 989–992.Google Scholar
  34. [34]
    G. De Luca, A. Romeo, V. Villari, N. Micali, I. Foltran, E. Foresti, et al., “Self-organizing functional materials via ionic self assembly: porphyrins H- and J-aggregates on synthetic chrysotile nanotubes,” Journal of the American Chemical Society, 2009, 131(20): 6920–6921.Google Scholar
  35. [35]
    G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angewandte Chemie, 1936, 49: 563–564.Google Scholar
  36. [36]
    G. Scheibe, “Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache,” Angewandte Chemie, 1937, 50(11): 212–219.Google Scholar
  37. [37]
    E. E. Jelley, “Spectral absorption and fluorescence of dyes in the molecular state,” Nature, 1936, 138(3502): 1009–1010.ADSGoogle Scholar
  38. [38]
    J. S. Briggs and A. Herzenberg, “Sum rules for the vibronic spectra of helical polymers,” Journal of Physics B: Atomic and Molecular Physics, 1970, 3(12): 1663–1676.ADSGoogle Scholar
  39. [39]
    F. C. Spano and C. Silva, “H-and J-aggregate behavior in polymeric semiconductors,” Annual Review of Physical Chemistry, 2014, 65: 477–500.ADSGoogle Scholar
  40. [40]
    M. Sauer and J. Hofkens, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. Hoboken, New Jersey, USA: John Wiley & Sons, 2010: 1–290.Google Scholar
  41. [41]
    A. Eisfeld and J. S. Briggs, “The J- and H-bands of organic dye aggregates,” Chemical Physics, 2006, 324(2–3): 376–384.Google Scholar
  42. [42]
    R. H. Tredgold, “Langmuir-blodgett films: organic monolayer imaged,” Nature, 1985: 313(6001): 348–348.ADSGoogle Scholar
  43. [43]
    K. M. Lenahan, Y. X. Wang, Y. Liu, R. O. Claus, J. R. Heflin, D. Marciu, et al., “Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology,” Advanced Materials, 1998, 10(11): 853–855.Google Scholar
  44. [44]
    A. Bahrampour, “New hollow core fiber design and porphyrin thin film deposition method towards enhanced optical fiber sensors,” Ph.D. dissertation, University of Naples, Italy, 2013.Google Scholar
  45. [45]
    R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, et al., “Aggregation of meso-substituted water-soluble porphyrins,” Journal of the American Chemical Society, 1972, 94(13): 4511–4517.Google Scholar
  46. [46]
    P. J. Collings, E. J. Gibbs, T. E. Starr, O. Vafek, C. Yee, L. A. Pomerance, et al., “Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores,” The Journal of Physical Chemistry B, 1999, 103(40): 8474–8481.Google Scholar
  47. [47]
    A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Applied Optics, 2013, 52(6): 1317–1324.ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mahboubeh Dehghani Sanij
    • 1
    Email author
  • Abolfazl Bahrampour
    • 2
  • Ali Reza Bahrampour
    • 2
  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations