Photonic Sensors

, Volume 9, Issue 2, pp 97–107 | Cite as

Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement

  • Liming Zhao
  • Hong Li
  • Yanming Song
  • Mingli DongEmail author
  • Lianqing ZhuEmail author
Open Access


An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65 pm/°C and 89.72 pm/°C, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.


Microdisplacement Mach-Zehnder interferometer fiber ball symmetrical structure seven-core fiber 



This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_16R07), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (Grant No. IDHT20170510), the 111 Project (Grant No. D17021), and Research Project of Beijing Education Committee (Grant No. Reseach on all-in-fiber integrated MZI sensor fabricated by CO2 laser).


  1. [1]
    A. Babu and B. George, “Design and development of a new non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(3): 976–984.ADSCrossRefGoogle Scholar
  2. [2]
    S. Rana, B. George, and V. J. Kumar, “An efficient digital converter for a non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(1): 263–272.ADSCrossRefGoogle Scholar
  3. [3]
    X. Rimpault, E. B. Nehme, M. Balazinski, and J. R. R. Mayer, “Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis,” Measurement, 2018, 118: 23–28.CrossRefGoogle Scholar
  4. [4]
    A. Arifin, A. M. Hatta, Sekartedjo, M. S. Muntini, and A. Rubiyanto, “Long-range displacement sensor based on SMS fiber structure and OTDR,” Photonic Sensors, 2015, 5(2): 166–171.ADSCrossRefGoogle Scholar
  5. [5]
    M. Sethuramalingam and U. Subbiah, “Enhancing the linearity characteristics of photoelectric displacement sensor based on extreme learning machine method,” Photonic Sensors, 2015, 5(1): 24–31.ADSCrossRefGoogle Scholar
  6. [6]
    X. L. Xie, B. W. Wang, L. L. Zhou, L. Weng, and Y. Sun, “Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide,” Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33(3): 689–696.Google Scholar
  7. [7]
    S. M. Chen, Y. Liu, X. X. Liu, Y. Zhang, and W. Peng, “Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating,” Photonic Sensors, 2015, 5(4): 351–356.ADSCrossRefGoogle Scholar
  8. [8]
    C. Zhong, C. Y. Shen, J. L. Chu, X. Zou, K. Li, Y. X. Jin, et al., “A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating,” IEEE Sensors Journal, 2012, 12(5): 1280–1283.ADSCrossRefGoogle Scholar
  9. [9]
    C. W. Shangguan, W. He, W. Zhnag, F. Luo, and L. Q. Zhu, “Optical fiber Fabry-Perot displacement sensor based on chemical etching method,” Semiconductor Optoelectronics, 2018, 39(02): 170–173.Google Scholar
  10. [10]
    C. Liu, W. Zhang, M. L. Dong, X. P. Lou, and L. Q. Zhu, “Dual-parameter sensing characteristics of long period fiber grating cascaded with fiber MZ structure fabricated by CO2 laser,” Infrared & Laser Engineering, 2017, 46(9): 922001–922007.CrossRefGoogle Scholar
  11. [11]
    Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, “High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2009, 22(1): 39–41.ADSCrossRefGoogle Scholar
  12. [12]
    H. S. Lin, Y. M. Raji, J. H. Lim, S. K. Liu, M. R. Mokhtar, and Z. Yusoff, “Packaged in-line Mach-Zehnder interferometer for highly sensitive curvature and flexural strain sensing,” Sensors & Actuators A: Physical, 2016, 250: 237–242.CrossRefGoogle Scholar
  13. [13]
    J. P. Chen, J. Zhou, and Z. H. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2013, 25(23): 2354–2357.ADSCrossRefGoogle Scholar
  14. [14]
    C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, et al., “High sensitive micro-displacement sensor based on M-Z interferometer by a bowknot type taper,” IEEE Photonics Technology Letters, 2013, 26(1): 62–65.ADSCrossRefGoogle Scholar
  15. [15]
    S. Zhou, B. Huang, and X. W. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Measurement Science & Technology, 2017, 28(4): 045107.ADSCrossRefGoogle Scholar
  16. [16]
    L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, et al., “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Optics Express, 2016, 24(18): 20210–20217.ADSCrossRefGoogle Scholar
  17. [17]
    B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, et al., “Investigation on a compact inline multimode-single-mode-multimode fiber structure,” Optics & Laser Technology, 2016, 80: 16–21.ADSCrossRefGoogle Scholar
  18. [18]
    L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Optics Express, 2012, 20(10): 11109–11120.ADSCrossRefGoogle Scholar
  19. [19]
    D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures,” Journal of Lightwave Technology, 2012, 30(5): 805–810.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Beijing Laboratory of Optical Fiber Sensing and SystemBeijing Information Science & Technology UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Optoelectronic Measurement TechnologyBeijing Information Science & Technology UniversityBeijingChina
  3. 3.Overseas Expertise Introduction Center for Discipline Innovation (“111 Center”)Beijing Information Science & Technology UniversityBeijingChina

Personalised recommendations