Photonic Sensors

, Volume 9, Issue 1, pp 78–88 | Cite as

Axial Micro-Strain Sensor Based on Resonance Demodulation Technology Via Dual-Mode CMECF

  • Xiao LiangEmail author
  • Tigang Ning
  • Jingcong Li
  • Yang Li
  • Zhiming Liu
Open Access


This paper firstly and experimentally demonstrates an in-fiber axial micro-strain sensing head, combined with a Mach-Zehnder interferometer (MZI) based on the concentric multilayer elliptical-core fiber (CMECF). This MZI with a high extinction ratio (about 15 dB) is successfully achieved with a CMECF-single mode fiber-CMECF (CSC) structure. The MZI sensor theory and the resonance demodulation technology are systematically described in this paper. In this CSC structure, two sections of the CMECF have a role as the mode generator and coupler, respectively. LP01 and LP11even, which have similar excitation coefficients, are two dominated propagating mode groups supported in the CMECF. On account of the distinct dual-mode property, a good stability of this sensor is realized. The detected resonance in the MZI shifts as the axial micro-strain variated due to the strong interaction between higher order modes. High sensitivity of ∼1.78 pm/με is experimentally achieved within the range of 0 με–1250 με, meanwhile, the intensity fluctuation is below 0.38 dB.


Few-mode fiber fiber sensor MZI axial micro-strain 



This work was supported by the Major State Basic Research Development Program of China (Granted No. 2010CB328206), the “Double Tops” Construction Funds of Minzu University of China (Granted No. 018004032101), the Young Teachers’ Research Project of Minzu University of China, and in part by the Fundamental Research Funds for the Central Universities, China.


  1. [1]
    L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” Journal of the Optical Society of America B, 2008, 25(3): 310–324.CrossRefGoogle Scholar
  2. [2]
    D. P. Zhou, J. W. Y. Lit, L. Wei, W. K. Liu, and Y. Liu, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Applied optics, 2008, 47(10): 1668–1672.ADSCrossRefGoogle Scholar
  3. [3]
    G. L. Yin, J. Tang, C. R. Liao, G. J. Wang, and Y. P. Wang, “Determination of optical fiber parameters based on fiber gratings and a search procedure,” Journal of Lightwave Technology, 2017, 35(16): 3591–3596.ADSCrossRefGoogle Scholar
  4. [4]
    Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Optics Letters, 2006, 31(23): 3414–3416.ADSCrossRefGoogle Scholar
  5. [5]
    G. S. Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technology Letters, 2013: 25(5): 496–499.ADSCrossRefGoogle Scholar
  6. [6]
    W. Cui, J. H. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Optics Express, 2015, 23(9): 11031–11036.ADSCrossRefGoogle Scholar
  7. [7]
    G. L. Yin, S. Q. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach-Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Optics & Laser Technology, 2013, 45: 294–300.ADSCrossRefGoogle Scholar
  8. [8]
    X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Applied Physics Letters, 2007, 90(15): 151113–1–151113–3.ADSCrossRefGoogle Scholar
  9. [9]
    M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photonics Technology Letters, 2011, 23(11): 700–702.ADSCrossRefGoogle Scholar
  10. [10]
    T. Zhao, Y. Gong, Y. J. Rao, Y. Wu, Z. L. Ran, and H. J. Wu, “Fiber-optic Fabry-Perot strain sensor based on graded-index multimode fiber,” Chinese Optics Letters, 2011, 9(5): 11–14.Google Scholar
  11. [11]
    X. Liang, S. Liu, Y. Li, Z. B. Liu, and S. S. Jian, “Characteristics of a high extinction ratio comb-filter based on LP01–LP11 even mode elliptical multilayer-core fibers,” Optical Fiber Technology, 2015, 21: 103–109.ADSCrossRefGoogle Scholar
  12. [12]
    P. Hlubina and P. Prochazka, “Sensor applications of two-mode fiber in the Michelson interferometer configuration,” SPIE, 1994, 2341: 202–211.ADSGoogle Scholar
  13. [13]
    P. Guo, Y. J. Rao, D. Y. Li, Y. Gong, G. D. Peng, Y. Wu, et al., “Inscription of Bragg gratings in few-mode optical fibers,” Chinese Optics Letters, 2013, 11(2): 020606–1–020606–3.CrossRefGoogle Scholar
  14. [14]
    G. L. Yin, C. L. Wang, Y. H. Zhao, B. Q. Jiang, T. Zhu, Y. P. Wang, et al., “Multi-channel mode converter based on a modal interferometer in a two-mode fiber,” Optics Letters, 2017, 42(19): 3757–3760.ADSCrossRefGoogle Scholar
  15. [15]
    D. S. Moon, B. K. Kim, A. Lin, G. Sun, W. T. Han, Y. G. Han, et al., “Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber,” Optics Express, 2007, 15(13): 8371–8376.ADSCrossRefGoogle Scholar
  16. [16]
    K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, et al., “Large effective-area few-mode multicore fiber,” IEEE Photonics Technology Letters, 2012, 24(21): 1941–1944.ADSCrossRefGoogle Scholar
  17. [17]
    C. Xia, R. A. Correa, N. Bai, E. A. Lopez, D. M. Arrioja, A. Schulzgen, et al., “Low-crosstalk few-mode multi-core fiber for high-mode-density space-division multiplexing,” in Proceeding of 2012 38th European Conference and Exhibition on Optical Communications, Amsterdam, Netherlands, 2012, pp. 1–3.Google Scholar
  18. [18]
    C. F. Wei, G. B. Lin, X. P. Dong, and S. C. Tao, “A tunable polarization-independent comb filter based on high-order mode fiber,” Journal of Optics, 2013, 15(5): 055403–1–055403–6.ADSCrossRefGoogle Scholar
  19. [19]
    Q. W. Zhang, X. L. Zeng, F. F. Pang, M. Wang, and T. Y. Wang, “Switchable multiwavelength fiber laser by using a compact in-fiber Mach-Zehnder interferometer,” Journal of Optics, 2012, 14(4): 045403–1–045403–5.ADSCrossRefGoogle Scholar
  20. [20]
    P. Hlubina, T. Martynkien, J. Olszewski, P. Mergo, M. Makara, K. Poturaj, et al., “Spectral-domain measurements of birefringence and sensing characteristics of a side-hole microstructured fiber,” Sensors, 2013, 13(9): 11424–11438.CrossRefGoogle Scholar
  21. [21]
    I. Martincek, D. Pudis, D. Kacik, and K. Schster, “Investigation of intermodal interference of LP01 and LP11 modes in the liquid-core optical fiber for temperature measurements,” Optik–International Journal for Light and Electron Optics, 2011, 122(8): 707–710.CrossRefGoogle Scholar
  22. [22]
    K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two mode optical-fiber sensor implementation methods,” Journal of Lightwave Technology, 1990, 8(11): 1688–1696.ADSCrossRefGoogle Scholar
  23. [23]
    G. L. Yin, C. L. Wang, Y. H. Zhao, B. Q. Jiang, T. Zhu, Y. P. Wang, et al., “Multi-channel mode converter based on a modal interferometer in a two-mode fiber,” Optics Letters, 2017, 42(19): 3757–3760.ADSCrossRefGoogle Scholar
  24. [24]
    Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Optics Express, 2014, 22(14): 17292–17302.ADSCrossRefGoogle Scholar
  25. [25]
    T. Geisler, M. E. V. Pedersen, and S. Herstrøm, “Measurement of spatial and polarization birefringence in two-mode elliptical core fibers,” in Proceeding of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA,USA, 2013, pp. 1–3.Google Scholar
  26. [26]
    W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” Journal of Lightwave Technology, 2004, 22(2): 469–477.ADSCrossRefGoogle Scholar
  27. [27]
    H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TMmode terahertz waveguide,” Optics Letters, 2016, 41(17): 4004–4007.ADSCrossRefGoogle Scholar
  28. [28]
    L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, 1995, 13(4): 615–627.ADSCrossRefGoogle Scholar
  29. [29]
    C. C. Wong, M. C. Su, and N. S. Lin, “A compact all fiber refractive index sensor based on modal interference,” IEEE Sensors, 2012, 3(11): 1–4.Google Scholar
  30. [30]
    E. Li, “Temperature compensation of multimodeinterference- based fiber devices,” Optics Letters, 2007, 32(14): 2064–2066.ADSCrossRefGoogle Scholar
  31. [31]
    D. G. Mina, J. W. Haus, A. Chong, A. Khanolkar, A. Sarangan, and K. Hansen, “Bi-tapered fiber sensor using visible to near infrared light,” Sensors and Actuators A: Physical, 2017, 263: 285–290.CrossRefGoogle Scholar
  32. [32]
    J. Liu, D. N. Wang, and Y. Liu, “Sensitivity improvement by fusion splicing of single mode fibers with core offset,” Optical Materials Express, 2017, 7(10): 3722–3730.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xiao Liang
    • 1
    Email author
  • Tigang Ning
    • 2
  • Jingcong Li
    • 1
  • Yang Li
    • 2
  • Zhiming Liu
    • 3
  1. 1.College of ScienceMinzu University of ChinaBeijingChina
  2. 2.Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina
  3. 3.The 41st Research Institute of CETCQingdaoChina

Personalised recommendations