Photonic Sensors

, Volume 9, Issue 1, pp 43–48 | Cite as

High Power Linearly Polarized Raman Fiber Laser With Stable Temporal Output

  • Jiaxin SongEmail author
  • Hanshuo Wu
  • Jun Ye
  • Jiangming Xu
  • Hanwei Zhang
  • Pu Zhou
Open Access


We demonstrate a high power linearly polarized Raman fiber laser (RFL) pumped by an amplified spontaneous emission (ASE) source. Temporal-stable operation of RFL could be ensured owing to the employment of ASE, which mitigates the inherent intensity noise compared with the classic scheme adopting laser oscillator as pump source. In this experiment, the RFL has up to 119.5 W output power, with central wavelength of 1129.2 nm, and full width at half maximum (FWHM) linewidth of about 4.18 nm. The polarization extinction ratio (PER) of the Raman laser is about 23 dB. Moreover, this laser has excellent long-term and short-term stabilities in terms of the output power and time domain.


Raman fiber laser amplified spontaneous emission linearly polarized 


  1. [1]
    V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” Journal of Optics, 2017, 19(2): 023001–1–023001–26.ADSCrossRefGoogle Scholar
  2. [2]
    A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities,” Optics Express, 2009, 17(20): 17909–17915.ADSCrossRefGoogle Scholar
  3. [3]
    L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Optics Express, 2010, 18(8): 8540–8555.ADSCrossRefGoogle Scholar
  4. [4]
    X. Wang, P. Zhou, Y. Miao, H. W. Zhang, H. Xiao, X. L. Wang, et al., “Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser,” Journal of the Optical Society of America B, 2014, 31(10): 2476–2479.CrossRefGoogle Scholar
  5. [5]
    H. W. Baac, N. Uribe-Patarroyo, and B. E. Bouma, “High-energy pulsed Raman fiber laser for biological tissue coagulation,” Optics Express, 2014, 22(6): 7113–7123.ADSCrossRefGoogle Scholar
  6. [6]
    H. W. Zhang, P. Zhou, X. Wang, X. Y. Du, H. Xiao, and X. J. Xu, “Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation,” Optics Express, 2015, 23(13): 17138–17144.ADSCrossRefGoogle Scholar
  7. [7]
    Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, et al., “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Optics Express, 2012, 20(16): 17695–17700.ADSCrossRefGoogle Scholar
  8. [8]
    X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, C. X. Yuan, X. D. Yan, et al., “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Optics Express, 2013, 21(18): 21208–21217.ADSCrossRefGoogle Scholar
  9. [9]
    S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technology Letters, 2004, 16(4): 1014–1016.ADSCrossRefGoogle Scholar
  10. [10]
    H. W. Zhang, P. Zhou, H. Xiao, and X. J. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Physics Letters, 2014, 11(7): 075104–1–075104–4.ADSCrossRefGoogle Scholar
  11. [11]
    Y. Feng, L. Taylor, and D. B. Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Optics Express, 2008, 16(15): 10927–10932.ADSCrossRefGoogle Scholar
  12. [12]
    D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, et al., “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Optics Express, 2005, 13(18): 6772–6776.ADSCrossRefGoogle Scholar
  13. [13]
    A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, et al., “Generation dynamics of the narrowband Yb-doped fiber laser,” Optics Express, 2013, 21(7): 8177–8182.ADSCrossRefGoogle Scholar
  14. [14]
    J. Schroder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Optics Express, 2009, 17(19): 16444–16449.ADSCrossRefGoogle Scholar
  15. [15]
    J. H. Wang, L. Zhang, J. Zhou, L. Si, J. B. Chen, and Y. Feng, “High power linearly polarized Raman fiber laser at 1120 nm,” Chinese Optics Letters, 2012, 10(2): 021406–1–021406–3.ADSCrossRefGoogle Scholar
  16. [16]
    L. Zhang, H. W. Jiang, X. Z. Yang, W. W. Pan, S. Z. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Scientific Reports, 2017, 7: 42611–1–42611–4.ADSCrossRefGoogle Scholar
  17. [17]
    Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Optics Express, 2013, 21(17): 20090–1–20090–6.ADSCrossRefGoogle Scholar
  18. [18]
    W. H. Loh and J. P. de Sandro, “Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results,” Optics Letters, 1996, 21(18): 1475–1477.ADSCrossRefGoogle Scholar
  19. [19]
    J. L. Li, K. I. Ueda, M. Musha, and A. Shirakawa, “Residual pump light as a probe of self-pulsing instability in an ytterbium-doped fiber laser,” Optics Letters, 2006, 31(10): 1450–1452.ADSCrossRefGoogle Scholar
  20. [20]
    Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” Journal of the Optical Society of America B, 2010, 27(2): 179–186.CrossRefGoogle Scholar
  21. [21]
    C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” Journal of Lightwave Technology, 2001, 19(8): 1140–1148.ADSCrossRefGoogle Scholar
  22. [22]
    M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Optics Communications, 2006, 260(2): 656–661.ADSCrossRefGoogle Scholar
  23. [23]
    J. M. Xu, L. J. Huang, J. Y. Leng, H. Xiao, S. F. Guo, P. Zhou, et al., “1.01 kW superfluorescent source in all-fiberized MOPA configuration,” Optics Express, 2015, 23(5): 5485–5490.ADSCrossRefGoogle Scholar
  24. [24]
    P. F. Ma, L. Huang, X. L. Wang, P. Zhou, and Z. J. Liu, “High power broadband all fiber superfluorescent source with linear polarization and near diffraction-limited beam quality,” Optics Express, 2016, 24(2): 1082–1088.ADSCrossRefGoogle Scholar
  25. [25]
    J. M. Xu, Z. K. Lou, J. Ye, J. Wu, J. Y. Leng, H. Xiao, et al., “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Optics Express, 2017, 25(5): 5609–5617.ADSCrossRefGoogle Scholar
  26. [26]
    P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Optics Letters, 2007, 32(17): 2605–2607.ADSCrossRefGoogle Scholar
  27. [27]
    K. Iwatsuki, “Excess noise reduction in fiber gyroscope using broader spectrum linewidth Er-doped superfluorescent fiber laser,” IEEE Photonics Technology Letters, 1991, 3(3): 281–283.ADSCrossRefGoogle Scholar
  28. [28]
    J. Nayaks, “Fiber-optic gyroscopes: from design to production [Invited],” Applied Optics, 2011, 50(25): E152–E161.ADSCrossRefGoogle Scholar
  29. [29]
    W. Burns, C. L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” Journal of Lightwave Technology, 1983, 1(1): 98–105.ADSCrossRefGoogle Scholar
  30. [30]
    B. Levit, A. Bekker, V. Smulakovsky, and B. Fischer, “Amplified-spontaneous-emission pumped raman fiber laser,” in Proceeding of Conference on Lasers & Electro-optics, Baltimore, United States, 2008, pp. 563–565.Google Scholar
  31. [31]
    J. M. Xu, W. Liu, J. Y. Leng, H. Xiao, S. F. Guo, P. Zhou, et al., “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Optics Letters, 2015, 40(13): 2973–2976.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jiaxin Song
    • 1
    Email author
  • Hanshuo Wu
    • 1
  • Jun Ye
    • 1
  • Jiangming Xu
    • 1
  • Hanwei Zhang
    • 1
  • Pu Zhou
    • 1
  1. 1.College of Advanced Interdisciplinary StudiesNational University of Defense TechnologyChangshaChina

Personalised recommendations