Advertisement

3D Research

, 10:4 | Cite as

Encryption of 3D Point Cloud Using Chaotic Cat Mapping

  • Chaochuan Jia
  • Ting Yang
  • Chuanjiang Wang
  • Binghui Fan
  • Fugui He
3DR Express
  • 27 Downloads
Part of the following topical collections:
  1. Cryptography

Abstract

3D point clouds, a new primitive representation for objects, are spreading among thousands of people through internet software. Thus, the privacy preserving problem of the 3D point cloud should be widely concerned by more and more people. To ensure the safe transmission and use of point cloud, two schemes of encryption have been proposed by using chaotic cat mapping in this paper. The two encryption schemes are tested by using various types of 3D point clouds. In addition, these proposed encryption algorithms are analyzed through key space, sensibility, statistical and encryption time analysis. These analysis results show that the two proposed schemes can resist the common existing cipher attacks and are effective encryption methods for 3D point cloud encryption. At the same time, the two promising encryption algorithms can guarantee the security of the 3D point cloud model transmitted on the Internet.

Graphical Abstract

Keywords

Encryption Decryption Cat mapping Performance analysis 

Notes

Acknowledgements

This work supported by National Young Natural Science Foundation (No. 61702375), China, Key Research Programs of Shandong Province (No. 2016GSF201197), Science and Technology Plan Programs of Colleges and Universities in Shandong Province (No. J16LB11).

References

  1. 1.
    Guo, K., Zou, D., & Chen, X. (2015). 3D Mesh labeling via deep convolutional neural networks. ACM Transactions on Graphics, 35(1), 1–12.CrossRefGoogle Scholar
  2. 2.
    Peng, X., Sun, B., & Ali, K, et al. (2015). Learning deep object detectors from 3D models. In: IEEE international conference on computer vision (pp. 1278–1286). IEEE Computer Society.Google Scholar
  3. 3.
    Yuan, C., Yu, X., & Luo, Z. (2017). 3D point cloud matching based on principal component analysis and iterative closest point algorithm. In International conference on audio, language and image processing (pp. 404–408). IEEE.Google Scholar
  4. 4.
    Aldoma, A., Marton, Z. C., Tombari, F., et al. (2012). Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Robotics & Automation Magazine, 19(3), 80–91.CrossRefGoogle Scholar
  5. 5.
    Kuchment, P., & Kunyansky, L. (2015). 2D and 3D reconstructions in acousto-electric tomography. Inverse Problems, 27(5), 55013–55033.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Rangel J.C., Morell V., & Cazorla M., et al.(2015). Object recognition in noisy rgb-d data. In Bioinspired computation in artificial systems (pp. 261–270).Google Scholar
  7. 7.
    Anthes, C., García-Hernández, R. J., & Wiedemann M., et al. (2016). State of the art of virtual reality technology. Aerospace conference (pp. 1–19). IEEE.Google Scholar
  8. 8.
    Stanisavljević, Ž. S. (2016). Data encryption standard visual representation. In Telecommunications Forum Telfor (pp. 946–953). IEEE.Google Scholar
  9. 9.
    Herath, U., Alawatugoda, J., & Ragel, R. (2014). Software implementation level countermeasures against the cache timing attack on advanced encryption standard. In IEEE international conference on industrial and information systems (pp. 75–80).Google Scholar
  10. 10.
    Jukl, M., & Cupera, J. (2016). Using of tiny encryption algorithm in CAN-Bus communication. Research in Agricultural Engineering, 62, 50–55.CrossRefGoogle Scholar
  11. 11.
    Sahu, H. K., Hadhav, V., Sonavane, S., et al. (2016). Cryptanalytic attacks on international data encryption algorithm block cipher. Defence Science Journal, 66(6), 582–589.CrossRefGoogle Scholar
  12. 12.
    Lin, X. J., Sun, L., & Qu, H. (2017). An efficient RSA-based certificateless public key encryption scheme. Discrete Applied Mathematics, 241, 39–47.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    dos Santos Coelho, L., & Mariani, V. C. (2008). Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Systems with Applications, 34(3), 1905–1913.CrossRefGoogle Scholar
  14. 14.
    Saremi, S., Mirjalili, S. M., & Mirjalili, S. (2014). Chaotic krill herd optimization algorithm. Procedia Technology, 12(1), 180–185.CrossRefGoogle Scholar
  15. 15.
    Arora, S., & Anand, P. (2018). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 6, 1–21.Google Scholar
  16. 16.
    Saremi, S., Mirjalili, S., & Lewis, A. (2014). Biogeography-based optimisation with chaos. Neural Computing and Applications, 25(5), 1077–1097.CrossRefGoogle Scholar
  17. 17.
    Kohli, Mehak, & Arora, Sankalap. (2018). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 5, 458–472.CrossRefGoogle Scholar
  18. 18.
    Arora, S., & Singh, S. (2017). An improved butterfly optimization algorithm with chaos. Journal of Intelligent & Fuzzy Systems, 32(1), 1079–1088.zbMATHCrossRefGoogle Scholar
  19. 19.
    Arora, S., & Anand, P. (2017). Chaos-enhanced flower pollination algorithms for global optimization. Journal of Intelligent & Fuzzy Systems, 33(1), 2853–3869.Google Scholar
  20. 20.
    Mostafa, A., Soliman, N. F., Abdalluh, M., & El-Samie, F. E. A. (2016). Speech encryption using two dimensional chaotic maps. In Computer engineering conference (pp. 235–240).Google Scholar
  21. 21.
    Niu, H., Zhou, C., Wang, B., Zheng, X., & Zhou, S. (2016). Splicing model and hyper–chaotic system for image encryption. Journal of Electrical Engineering, 67(2), 78–86.CrossRefGoogle Scholar
  22. 22.
    Yap, W. S., Phan, C. W., Yau, W. C., et al. (2015). Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 80(3), 1483–1491.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Mohammad Seyedzadeh, S., & Mirzakuchaki, S. (2012). A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Processing, 92(5), 1202–1215.CrossRefGoogle Scholar
  24. 24.
    Bigdeli, N., Farid, Y., & Afshar, K. (2012). A novel image encryption/decryption scheme based on chaotic neural networks. Engineering Applications of Artificial Intelligence, 25(4), 753–765.CrossRefGoogle Scholar
  25. 25.
    Kumari, M., & Gupta, S. (2018). A novel image encryption scheme based on intertwining chaotic maps and RC4 stream cipher. 3D Research, 9(1), 10–30.CrossRefGoogle Scholar
  26. 26.
    Jin, X., Wu, Z., & Song, C., et al. (2016). 3D Point cloud encryption through chaotic mapping. In Advances in multimedia information processingPCM 2016 (pp. 119–129). Springer International Publishing.Google Scholar
  27. 27.
    Wu, Z. X., Jin, X., Song, C. G., et al. (2016). Random reversible matrix based point cloud encryption. Journal of system Simulation, 28(10), 2455–2459.Google Scholar
  28. 28.
    Yang, X., & Zhang, H. (2016). Encryption of 3D point cloud object with deformed fringe. Advances in Optical Technologies, 1, 1–9.CrossRefGoogle Scholar
  29. 29.
    Pradhan, C., Saha, B. J., Kabi, K. K., Arun, & Bisoi, A. K. (2014). Blind watermarking techniques using DCT and arnold 2D cat map for color images. In International conference on communications and signal processing (pp. 026–030).Google Scholar
  30. 30.
    Kabi, K. K., Saha, B. J., & Chauhan, A., et al. (2015). Implementation of new framework for image encryption using Arnold 3D cat map. In Information systems design and intelligent applications (pp. 379–384). Springer.Google Scholar
  31. 31.
    Lu, M., Wan, J. W., Guo, Y. L., et al. (2013). Rotational projection statistics for 3D local surface description and object recognition. International Journal of Computer Vision, 105(1), 63–86.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H’Roura, J., Roy, M., & Mansouri, A., et al. (2018). Salient spin images: A descriptor for 3D object recognition. In International conference on image and signal processing (pp. 233–242). Springer, Cham.Google Scholar
  33. 33.
    Zhen, M., Wang, W., & Wang, R. (2015). Signature of unique angles histograms for 3D data description. In IEEE international conference on multimedia & expo workshops (pp. 1–6).Google Scholar
  34. 34.
    Rimkus, K., Lipnickas, A., & Sinkevicius, S. (2014). Classification of 3D point cloud using numerical surface signatures on interest points. Elektronika Ir Elektrotechnika, 20(6), 8–11.CrossRefGoogle Scholar
  35. 35.
    Yang, J., Cao, Z., & Zhang, Q. (2016). A fast and robust local descriptor for 3D point cloud registration. Information Sciences, 346–347, 163–179.CrossRefGoogle Scholar
  36. 36.
    Li, P., Wang, J., Zhao, Y., Wang, Y., & Yao, Y. (2016). Improved algorithm for point cloud registration based on fast point feature histograms. Journal of Applied Remote Sensing, 10(4), 024–045.Google Scholar
  37. 37.
    Rusu, R. B., Bradski, G., Thibaux, R., & Hsu, J. (2014). Fast 3D recognition and pose using the viewpoint feature histogram. In IEEE international conference on intelligent robots and systems (pp. 2155–2162).Google Scholar

Copyright information

© 3D Display Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chaochuan Jia
    • 1
    • 2
  • Ting Yang
    • 2
  • Chuanjiang Wang
    • 1
  • Binghui Fan
    • 1
  • Fugui He
    • 2
  1. 1.College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.College of Electronics and Information EngineeringWest Anhui UniversityLu’anChina

Personalised recommendations