3D Research

, 10:2 | Cite as

A Novel n-Rightmost Bit Replacement Image Steganography Technique

  • Aditya Kumar SahuEmail author
  • Gandharba Swain
3DR Express
Part of the following topical collections:
  1. Cryptography


Image steganography is a technique for hiding the secret data in a carrier image. This paper proposes a novel n-right most bit replacement image steganography technique to hide the secret data in an image, where 1 ≤ n ≤ 4. The major objectives of the proposed technique are, (1) improving the peak signal to noise ratio (PSNR), (2) improving the embedding capacity (EC), (3) avoiding the fall of boundary problem (FOBP), and (4) robustness against salt and pepper noise and RS attack. Initially, the n-right most bits for each pixel and the n-bits of the secret data are converted to decimal values. Then, using the difference between these two decimal values the original pixels are readjusted to produce stego-pixels. From the experimental results it is observed that PSNR is higher for lower value of n and the EC is larger for the higher value of n. Furthermore, it is also experimentally investigated that the proposed technique is resistant to steganalytic attacks.


Data hiding Steganography PSNR Embedding capacity 


  1. 1.
    Subhedar, M. S., & Mankar, V. H. (2014). Current status and key issues in image steganography: A survey. Computer Science Review, 13, 95–113.zbMATHCrossRefGoogle Scholar
  2. 2.
    Hussain, M., Wahab, A. W. A., Idris, Y. I. B., Ho, A. T., & Jung, K. H. (2018). Image steganography in spatial domain: A survey. Signal Processing: Image Communication, 65, 46–66.Google Scholar
  3. 3.
    Pradhan, A., Sahu, A. K., Swain, G., & Sekhar, K. R. (2016). Performance evaluation parameters of image steganography techniques. In: IEEE international conference on research advances in integrated navigation systems (pp. 1–8).Google Scholar
  4. 4.
    Gutub, A. A. A. (2010). Pixel indicator technique for RGB image steganography. Journal of Emerging Technologies in Web Intelligence, 2(1), 56–64.Google Scholar
  5. 5.
    Sahu, A. K., & Swain, G. (2016). A review on LSB substitution and PVD based image steganography techniques. Indonesian Journal of Electrical Engineering and Computer Science, 2(3), 712–719.CrossRefGoogle Scholar
  6. 6.
    Gutub, A., Al-Juaid, N., & Khan, E. (2017). Counting-based secret sharing technique for multimedia applications. Multimedia Tools and Applications. Scholar
  7. 7.
    Sahu, A. K., Swain, G., & Babu, E. S. (2018). Digital image steganography using bit flipping. Cybernetics and Information Technologies, 18(1), 69–80.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sahu, A. K., & Swain, G. (2017). Information hiding using group of bits substitution. International Journal on Communications Antenna and Propagation, 7(2), 162–167.CrossRefGoogle Scholar
  9. 9.
    Fridrich, J., & Goljan, M. (2002). Practical steganalysis of digital images: State of the art. Security and Watermarking of Multimedia Contents IV, International Society for Optics and Photonics, 4675, 1–14.Google Scholar
  10. 10.
    Wu, D. C., & Tsai, W. H. (2003). A steganographic method for images by pixel-value differencing. Pattern Recognition Letters, 24(9–10), 1613–1626.zbMATHCrossRefGoogle Scholar
  11. 11.
    Swain, G. (2016). Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimedia Tools and Applications, 75(21), 13541–13556.CrossRefGoogle Scholar
  12. 12.
    Swain, G. (2018). Adaptive and non-adaptive PVD steganography using overlapped pixel blocks. Arabian Journal for Science and Engineering. Scholar
  13. 13.
    Hameed, M. A., Aly, S., & Hassaballah, M. (2017). An efficient data hiding method based on adaptive directional pixel value differencing (ADPVD). Multimedia Tools and Applications, 77(12), 14705–14723.CrossRefGoogle Scholar
  14. 14.
    Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2017). A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Processing: Image Communication, 50, 44–57.Google Scholar
  15. 15.
    Swain, G. (2018). Very high capacity image steganography technique using quotient value differencing and LSB substitution. Arabian Journal for Science and Engineering, 1, 4. Scholar
  16. 16.
    Hussain, M., Wahid, A., Wahab, A., Javed, N., & Jung, K. (2016). Hybrid data hiding scheme using right-most digit replacement and adaptive least significant bit for digital images. SS Symmetry, 8(6), 41. Scholar
  17. 17.
    Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005). Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proceedings-Vision, Image and Signal Processing, 152(5), 611–615.CrossRefGoogle Scholar
  18. 18.
    Khodaei, M., & Faez, K. (2012). New adaptive steganographic method using least-significant-bit substitution and pixel-value differencing. IET Image Processing, 6(6), 677–686.CrossRefGoogle Scholar
  19. 19.
    Liao, X., Wen, Q. Y., & Zhang, J. (2011). A steganographic method for digital images with four-pixel differencing and modified LSB substitution. Journal of Visual Communication and Image Representation, 22(1), 1–8.CrossRefGoogle Scholar
  20. 20.
    Sahu, A. K., & Swain, G. (2018). Pixel overlapping image steganography using PVD and modulus function. 3D Research, 9, 40. Scholar
  21. 21.
    Wu, N. I., & Hwang, M. S. (2017). A novel LSB data hiding scheme with the lowest distortion. The Imaging Science Journal, 65(6), 371–378.CrossRefGoogle Scholar
  22. 22.
    USC-SIPI Image Database (Online). Available Accessed 14 June 2018.
  23. 23.
    Sahu, A. K., & Swain, G. (2018). An improved data hiding technique using bit differencing and LSB matching. Internetworking Indonesia Journal, 10(1), 17–21.Google Scholar
  24. 24.
    Liao, X., Qin, Z., & Ding, L. (2017). Data embedding in digital images using critical functions. Signal Processing: Image Communication, 58, 146–156.CrossRefGoogle Scholar
  25. 25.
    Lu, T. C., Tseng, C. Y., & Wu, J. H. (2015). Dual imaging-based reversible hiding technique using LSB matching. Signal Processing, 108, 77–89.CrossRefGoogle Scholar
  26. 26.
    Lu, T. C., & Leng, H. S. (2017). Reversible dual-image-based hiding scheme using block folding technique. Symmetry, 9(10), 223–248. Scholar
  27. 27.
    Lu, T. C., & Chang, C. C. (2008). Lossless nibbled data embedding scheme based on difference expansion. Image and Vision Computing, 26(5), 632–638. Scholar
  28. 28.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  29. 29.
    Jung, K. H. (2018). Data hiding scheme improving embedding capacity using mixed PVD and LSB on bit plane. Journal of Real-Time Image Processing, 14(1), 127–136.CrossRefGoogle Scholar
  30. 30.
    Mousavi, S. M., Naghsh, A., Manaf, A. A., & Abu-Bakar, S. A. R. (2017). A robust medical image watermarking against salt and pepper noise for brain MRI images. Multimedia Tools and Applications, 76(7), 10313–10342.CrossRefGoogle Scholar

Copyright information

© 3D Display Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringKoneru Lakshmaiah Education FoundationVaddeswaram, GunturIndia
  2. 2.Department of Computer Science and EngineeringGMRITRajamIndia

Personalised recommendations