3D Research

, 9:37 | Cite as

Detection of Choroidal Neovascularization Through Characterization of Changes in Anterior and Posterior Eye Segments

  • G. AnithaEmail author
  • Mohamed Ismail
3DR Express


Choroidal neovascularization (CNV) is an age related eye disease caused due to the growth of new blood vessels beneath the retina which leads to vision loss. This is identified by analyzing the changes in the anterior segment such as filtration angle, which is one of the important parameters in ophthalmology and analyzing the posterior segment of the retinal image such as thickness of fusiform and commotion of blood vessels in Retinal Pigment Epithelium layer. Using image processing techniques, the Optical Coherence Tomography images of anterior and posterior eye segments are analyzed and the factors such as Angle opening distance, Euler number, thickness, angle of elevation and its maximum thickness value (in pixels) of the image are obtained. It is observed that there is a vast change in the above factors during CNV and thus it is possible to get knowledge whether the particular person is suffering from the disease or not. The factors obtained are fed to Neural Classifier which is used to show whether the person is in the starting stage or final stage of the disease.

Graphical Abstract


Choroidal neovascularization Optical coherence tomography Non invasive technique Anterior and posterior eye segments 



The authors gratefully acknowledge the Vasan Eye Care, Chennai for providing the OCT images of macula as it was very helpful for analyzing the posterior eye segments. They also thank Robert Koprowski and Zygmunt Wrobel for giving permission to use the images from their book which were required to analyze the anterior eye segments.


  1. 1.
    Garcia, J. M. B. B., Isaac, D. L. C., & Avila, M. (2017). Diabetic retinopathy and OCT angiography: Clinical findings and future perspectives. International Journal of Retina and Vitreous, 3(1), 14.CrossRefGoogle Scholar
  2. 2.
    Shen, C., Yan, S., Du, M., Zhao, H., Shao, L., & Hu, Y. (2018). Assessment of choroidal osteoma complicating choroidal neovascularization by optical coherence tomography angiography. International Ophthalmology, 38(2), 1–6.CrossRefGoogle Scholar
  3. 3.
    Leung, C. K., & Weinreb, R. N. (2011). Anterior chamber angle imaging with optical coherence tomography. Eye, 25(3), 261.CrossRefGoogle Scholar
  4. 4.
    Sasaki, K., Sakamoto, Y., & Shibata, T. (1990). Application of an anterior eye segment analysis system in clinical cataract research. Lens and Eye Toxicity Research, 7(3–4), 505–515.Google Scholar
  5. 5.
    Nowinska, A. K., Teper, S. J., Janiszewska, D. A., Lyssek-Boron, A., Dobrowolski, D., Koprowski, R., & Wylegala, E. (2015). Comparative study of anterior eye segment measurements with spectral swept-source and time-domain optical coherence tomography in eyes with corneal dystrophies. BioMed Research International, 2015, 805367. Scholar
  6. 6.
    Orucoglu, F., & Toker, E. (2015). Comparative analysis of anterior segment parameters in normal and keratoconus eyes generated by scheimpflug tomography. Journal of Ophthalmology, 2015, 925414. Scholar
  7. 7.
    Lin, S. Y., Shih, Y. F., Huang, L. L., Huang, J. K., Lin, L. L. K., & Hung, T. (1998). Changes of anterior segment in myopic eyes: Analysis with scheimpflug system. In Myopia updates (pp. 106–110). Springer, Tokyo.CrossRefGoogle Scholar
  8. 8.
    Prashanth, R., Paranjape, S. V., Ghosh, S., Dutta, P. K., & Chatterjee, J. (2010). Characterization of changes in retinal pigment epithelium layer in choroidal neovascularization through analysis of optical coherence tomographs. In Students’ technology symposium (TechSym), 2010 IEEE (pp. 39–43). IEEE.Google Scholar
  9. 9.
    Koprowski, R., & Wróbel, Z. (2011). Image processing in optical coherence tomography using Matlab. Gliwice: Robert Koprowski.Google Scholar
  10. 10.
    Takerkart, S., Fenouil, R., Piovano, J., Reynaud, A., Hoffart, L., Chavane, F., & Masson, G. S. (2008). A quantification framework for post-lesion neo-vascularization in retinal angiography. In 5th IEEE international symposium on biomedical imaging: From nano to macro, 2008. ISBI 2008 (pp. 1457–1460). IEEE.Google Scholar
  11. 11.
    Brankin, E., McCuIlagh, P., Black, N., Patton, W., & Muldrew, A. (2006). The optimisation of thresholding techniques for the identification of choroidal neovascular membranes in exudative age-related macular degeneration. In 19th IEEE International Symposium on Computer-Based Medical Systems, 2006. CBMS 2006 (pp. 430–435). IEEE.Google Scholar
  12. 12.
    Brankin, E., McCullagh, P., Patton, W., Muldrew, A., & Black, N. (2008). Identification of choroidal neovascularisation on fluorescein angiograms using gradient vector flow active contours. In International Machine Vision and Image Processing Conference, 2008. IMVIP’08 (pp. 165–169). IEEE.Google Scholar
  13. 13.
    Chhablani, J., Krishnan, T., Sethi, V., & Kozak, I. (2014). Artifacts in optical coherence tomography. Saudi Journal of Ophthalmology, 28(2), 81–87.CrossRefGoogle Scholar
  14. 14.
    Golzan, S. M., Avolio, A., & Graham, S. L. (2011). Minimising retinal vessel artefacts in optical coherence tomography images. Computer Methods and Programs in Biomedicine, 104(2), 206–211.CrossRefGoogle Scholar
  15. 15.
    Spaide, R. F. (2009). Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. American Journal of Ophthalmology, 147(4), 644–652.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.B S Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia

Personalised recommendations