Advertisement

Enhancing Curcumin Oral Bioavailability Through Nanoformulations

  • Vinod S. Ipar
  • Anisha Dsouza
  • Padma V. DevarajanEmail author
Review Article
  • 167 Downloads

Abstract

Curcumin is a promising therapeutic agent that exhibits manifold therapeutic activities. However, it is challenging to study curcumin as it exhibits poor aqueous solubility and low permeability and it is a substrate for P-glycoprotein (P-gp). It is readily metabolized in the body, but many active metabolites of curcumin have been identified that could also be exploited for therapy. Strategies for the oral bioenhancement of curcumin to leverage the potential of curcumin as a therapeutic molecule are discussed here in light of these challenges. A brief discussion of conventional bioenhancement strategies using cyclodextrin complexes, solid dispersions, and solid self-emulsifying drug delivery systems is given. However, the major focus of this review is the application of nano-based approaches to the bioenhancement of curcumin. A description of the main advantages of nanosystems is followed by a detailed review of various nanosystems of curcumin, including nanosuspensions and various carrier-based nanosystems. Each nanosystem considered here is first briefly introduced, and then studies of the nanosystem containing curcumin are discussed. Lipid-based systems including liposomes and solid lipid nanoparticles, microemulsions, self-microemulsifying drug-delivery systems, nanoemulsions, and polymeric nanoparticles—which are widely explored—are dealt with in detail. Other miscellaneous systems discussed include inorganic nanoparticles, micelles, solid nanodispersions, phytosomes, and dendrimers. The possibility of using intact nanoparticles to achieve the targeted oral delivery of curcumin and thus harness the benefits of this wonder nutraceutical is an exciting prospect.

Notes

Compliance with Ethical Standards

Funding

No funding was received for this manuscript.

Conflict of interest

Vinod S. Ipar, Anisha A. D’Souza, and Padma V. Devarajan report that they have no conflict of interest to declare.

References

  1. 1.
    D’Souza AA, Devarajan PV. Bioenhanced oral curcumin nanoparticles: role of carbohydrates. Carbohydr Polym. 2016;136:1251–8.  https://doi.org/10.1016/j.carbpol.2015.10.021.Google Scholar
  2. 2.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.Google Scholar
  3. 3.
    Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.Google Scholar
  4. 4.
    Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92.Google Scholar
  5. 5.
    Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017;7(3):339–46.Google Scholar
  6. 6.
    Hatcher H, Planalp R, Cho J, Torti F, Torti S. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.Google Scholar
  7. 7.
    Burgos Moron E, Calderon Montano JM, Salvador J, Robles A, Lopez Lazaro M. The dark side of curcumin. Int J Cancer. 2010;126(7):1771–5.  https://doi.org/10.1002/ijc.24967.Google Scholar
  8. 8.
    Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–78.Google Scholar
  9. 9.
    Purpura M, Lowery RP, Wilson JM, Mannan H, Munch G, Razmovski-Naumovski V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr. 2018;57(3):929–38.  https://doi.org/10.1007/s00394-016-1376-9.Google Scholar
  10. 10.
    Shankar TB, Shantha N, Ramesh H, Murthy IA, Murthy VS. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73–5.Google Scholar
  11. 11.
    Qureshi S, Shah A, Ageel A. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med. 1992;58(02):124–7.Google Scholar
  12. 12.
    Hsieh C-Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–900.Google Scholar
  13. 13.
    Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.  https://doi.org/10.1186/1472-6882-6-10.Google Scholar
  14. 14.
    Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9.  https://doi.org/10.1158/1078-0432.CCR-08-0024.Google Scholar
  15. 15.
    John MK, Xie H, Bell EC, Liang D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Res. 2013;33(10):4285–91.Google Scholar
  16. 16.
    Hu L, Shi Y, Li JH, Gao N, Ji J, Niu F, et al. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech. 2015;16(6):1327–34.  https://doi.org/10.1208/s12249-014-0254-0.Google Scholar
  17. 17.
    Liu D, Schwimer J, Liu Z, Woltering EA, Greenway FL. Antiangiogenic effect of curcumin in pure versus in extract forms. Pharm Biol. 2008;46(10–11):677–82.Google Scholar
  18. 18.
    Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.Google Scholar
  19. 19.
    Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces. 2014;117:520–7.  https://doi.org/10.1016/j.colsurfb.2014.03.005.Google Scholar
  20. 20.
    Hjorth Tønnesen H. Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules—studies of curcumin and curcuminoids. Die Pharmazie. 2006;61(8):696–700.Google Scholar
  21. 21.
    Chuah AM, Jacob B, Jie Z, Ramesh S, Mandal S, Puthan JK, et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014;156:227–33.Google Scholar
  22. 22.
    Pan MH, Huang T, Lin J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27(4):486–94.Google Scholar
  23. 23.
    Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology. 1980;16(3):259–65.Google Scholar
  24. 24.
    Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica. 1978;8(12):761–8.Google Scholar
  25. 25.
    Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, et al. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys. 2018;646:31–7.  https://doi.org/10.1016/j.abb.2018.03.030.Google Scholar
  26. 26.
    Chen CY, Yang WL, Kuo SY. Cytotoxic activity and cell cycle analysis of hexahydrocurcumin on SW 480 human colorectal cancer cells. Nat Prod Commun. 2011;6(11):1671–2.Google Scholar
  27. 27.
    Khopde SM, Priyadarsini KI, Guha SN, Satav JG, Venkatesan P, Rao MNA. Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem. 2000;64(3):503–9.Google Scholar
  28. 28.
    Okada K, Wangpoengtrakul C, Tanaka T, Toyokuni S, Uchida K, Osawa T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr. 2001;131(8):2090–5.Google Scholar
  29. 29.
    Lai CS, Wu JC, Yu SF, Badmaev V, Nagabhushanam K, Ho CT, et al. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol Nutr Food Res. 2011;55(12):1819–28.Google Scholar
  30. 30.
    Pari L, Murugan P. Tetrahydrocurcumin: effect on chloroquine-mediated oxidative damage in rat kidney. Basic Clin Pharmacol Toxicol. 2006;99(5):329–34.Google Scholar
  31. 31.
    Murugan P, Pari L. Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin–nicotinamide induced experimental diabetes. J Basic Clin Physiol Pharmacol. 2006;17(4):231–44.Google Scholar
  32. 32.
    Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 2007;30(1):74–8.Google Scholar
  33. 33.
    Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci. 2004;21(1):25–51.Google Scholar
  34. 34.
    Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9.Google Scholar
  35. 35.
    Hani U, Shivakumar H. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Curr Drug Deliv. 2014;11(6):792–804.Google Scholar
  36. 36.
    Ajay S, Harita D, Tarique M, Amin P. Solubility and dissolution rate enhancement of curcumin using Kollidon VA64 by solid dispersion technique. Int J Pharm Tech Res. 2012;4:1055–64.Google Scholar
  37. 37.
    Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–83.  https://doi.org/10.1016/j.biomaterials.2013.12.090.Google Scholar
  38. 38.
    Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.Google Scholar
  39. 39.
    Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, et al. Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–70.Google Scholar
  40. 40.
    Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10(3):752–62.  https://doi.org/10.1208/s12249-009-9264-8.Google Scholar
  41. 41.
    Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1, 2):127–35.Google Scholar
  42. 42.
    Singh R, Tønnesen HH, Vogensen SB, Loftsson T, Másson M. Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J Incl Phenom Macrocycl Chem. 2010;66(3, 4):335–48.Google Scholar
  43. 43.
    Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B. 2010;79(1):113–25.Google Scholar
  44. 44.
    Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: a review. Pak J Pharm Sci. 2009;22(2):234–46.Google Scholar
  45. 45.
    Allawadi D, Singh N, Singh S, Arora S. Solid dispersions: a review on drug delivery system and solubility enhancement. Int J Pharm Sci Res. 2013;4(6):2094.Google Scholar
  46. 46.
    Cilurzo F, Minghetti P, Casiraghi A, Montanari L. Characterization of nifedipine solid dispersions. Int J Pharm. 2002;242(1–2):313–7.Google Scholar
  47. 47.
    Seo SW, Han HK, Chun MK, Choi HK. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int J Pharm. 2012;424(1–2):18–25.Google Scholar
  48. 48.
    Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13(1):159–66.  https://doi.org/10.1208/s12249-011-9732-9.Google Scholar
  49. 49.
    Teixeira C, Mendonca L, Bergamaschi M, Queiroz R, Souza G, Antunes L, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech. 2016;17(2):252–61.Google Scholar
  50. 50.
    Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol. 2007;5(4):567–76.Google Scholar
  51. 51.
    Yan YD, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi H-G. Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull. 2011;34(8):1179–86.Google Scholar
  52. 52.
    Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.Google Scholar
  53. 53.
    Zhang P, Liu Y, Feng N, Xu J. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm. 2008;355(1–2):269–76.Google Scholar
  54. 54.
    Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–45.Google Scholar
  55. 55.
    Kumar A, Sahoo SK, Padhee K, Kochar P, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharmacie Globale. 2011;3(3):001–7.Google Scholar
  56. 56.
    Jiang Y, Wang J, Wang Y, Ke X, Zhang C, Yang R. Self-emulsifying drug delivery system improves preventive effect of curcuminoids on chronic heart failure in rats. Saudi Pharm J. 2018;26(4):528–34.  https://doi.org/10.1016/j.jsps.2018.02.003.Google Scholar
  57. 57.
    Berginc K, Trontelj J, Basnet NS, Kristl A. Physiological barriers to the oral delivery of curcumin. Die Pharmazie. 2012;67(6):518–24.Google Scholar
  58. 58.
    Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003;555(2):311–6.Google Scholar
  59. 59.
    Lopes Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals. 2016;9(4):71.Google Scholar
  60. 60.
    Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul P-N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol. 2002;64(4):573–82.Google Scholar
  61. 61.
    Romiti N, Tongiani R, Cervelli F, Chieli E. Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci. 1998;62(25):2349–58.Google Scholar
  62. 62.
    Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN, Tang SL, et al. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules. 2015;20(6):11524–34.Google Scholar
  63. 63.
    Kim HG, Lee JH, Lee SJ, Oh J-H, Shin E, Jang YP, et al. The increased cellular uptake and biliary excretion of curcumin by quercetin: a possible role of albumin binding interaction. Drug Metab Dispos. 2012;40:1452–5.Google Scholar
  64. 64.
    Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res. 2014;4(4):344–52.Google Scholar
  65. 65.
    Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, et al. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm. 2015;490(1–2):22–31.  https://doi.org/10.1016/j.ijpharm.2015.05.008.Google Scholar
  66. 66.
    Moorthi C, Kathiresan K. Curcumin–piperine/curcumin–quercetin/curcumin–silibinin dual drug-loaded nanoparticulate combination therapy: a novel approach to target and treat multidrug-resistant cancers. J Med Hypotheses Ideas. 2013;7(1):15–20.Google Scholar
  67. 67.
    Shoba G, Joy D, Joseph T, Rajendran MMR, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6.Google Scholar
  68. 68.
    Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–90.Google Scholar
  69. 69.
    Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomed. 2017;12:2689.Google Scholar
  70. 70.
    Wang F, Chen J, Dai W, He Z, Zhai D, Chen W. Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers. Acta Pharm. 2017;67(3):357–71.Google Scholar
  71. 71.
    Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. 2017;13(9):953–72.Google Scholar
  72. 72.
    Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. In: Balogh LP, editor. Nanomedicine in cancer. New York: Pan Stanford; 2017. p. 291–322.Google Scholar
  73. 73.
    Jahagirdar PS, Gupta PK, Kulkarni SP, Devarajan PV. Polymeric curcumin nanoparticles by a facile in situ method for macrophage targeted delivery. Bioeng Transl Med. 2019;4:141–51.Google Scholar
  74. 74.
    Wei Z-Q, Zhang Y-H, Ke C-Z, Chen H-X, Ren P, He Y-L, et al. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol. 2017;23(34):6252.Google Scholar
  75. 75.
    Busari ZA, Dauda KA, Morenikeji OA, Afolayan F, Oyeyemi OT, Meena J, et al. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Front Pharmacol. 2017;8:622.Google Scholar
  76. 76.
    Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018;45(1):84–93.Google Scholar
  77. 77.
    Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017;142:148–57.Google Scholar
  78. 78.
    Mande PP, Bachhav SS, Devarajan PV. Solid dispersion of curcumin as polymeric films for bioenhancement and improved therapy of rheumatoid arthritis. Pharm Res. 2016;33(8):1972–87.  https://doi.org/10.1007/s11095-016-1934-0.Google Scholar
  79. 79.
    Gao Y, Li Z, Sun M, Li H, Guo C, Cui J, et al. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm. 2010;36(10):1225–34.Google Scholar
  80. 80.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785.Google Scholar
  81. 81.
    Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv. 2012;9(11):1347–64.Google Scholar
  82. 82.
    Kavitha V, Neethu C, Dineshkumar B, Krishnakumar K, John A. Nanosuspension formulation: an improved drug delivery system. Nanosci Nanotechnol Int J. 2014;4:1–5.Google Scholar
  83. 83.
    Arunkumar N, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm. 2014;3(3).Google Scholar
  84. 84.
    Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;2015:1.Google Scholar
  85. 85.
    Li X, Gu L, Xu Y, Wang Y. Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm. 2009;35(7):827–33.Google Scholar
  86. 86.
    Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.Google Scholar
  87. 87.
    Kaur J, Bawa P, Rajesh SY, Sharma P, Ghai D, Jyoti J, et al. Formulation of curcumin nanosuspension using Box–Behnken design and study of impact of drying techniques on its powder characteristics. Asian J Pharm Clin Res. 2017;10:43–51.  https://doi.org/10.22159/ajpcr.2017.v10s4.Google Scholar
  88. 88.
    Wang Y, Wang C, Zhao J, Ding Y, Li L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J Colloid Interface Sci. 2017;485:91–8.  https://doi.org/10.1016/j.jcis.2016.09.003.Google Scholar
  89. 89.
    Gao Y, Wang C, Sun M, Wang X, Yu A, Li A, et al. In vivo evaluation of curcumin loaded nanosuspensions by oral administration. J Biomed Nanotechnol. 2012;8(4):659–68.Google Scholar
  90. 90.
    Hirlekar SDS, Bhairy S, Bhairy S, Hirlekar R, Hirlekar R. Preparation and characterization of oral nanosuspension loaded with curcumin. Int J Pharm Pharm Sci. 2018;10(6):90.  https://doi.org/10.22159/ijpps.2018v10i6.22027.Google Scholar
  91. 91.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.Google Scholar
  92. 92.
    Shaheen SM, Shakil Ahmed F, Hossen MN, Ahmed M, Amran MS, Ul-Islam M. Liposome as a carrier for advanced drug delivery. Pak J Biol Sci. 2006;9(6):1181–91.Google Scholar
  93. 93.
    Shashi K, Satinder K, Bharat P. A complete review on: liposomes. Int Res J Pharm. 2012;3(7):10–6.Google Scholar
  94. 94.
    Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci. 2018;19(6):E1637.  https://doi.org/10.3390/ijms19061637.Google Scholar
  95. 95.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9.Google Scholar
  96. 96.
    Li ZL, Peng SF, Chen X, Zhu YQ, Zou LQ, Liu W, et al. Pluronics modified liposomes for curcumin encapsulation: sustained release, stability and bioaccessibility. Food Res Int. 2018;108:246–53.  https://doi.org/10.1016/j.foodres.2018.03.048.Google Scholar
  97. 97.
    Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6.  https://doi.org/10.1021/jf9013923.Google Scholar
  98. 98.
    Aadinath W, Bhushani A, Anandharamakrishnan C. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes. Mater Sci Eng C. 2016;64:293–302.Google Scholar
  99. 99.
    Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomed. 2012;7:5995–6002.  https://doi.org/10.2147/IJN.S38043.Google Scholar
  100. 100.
    Chen H, Wu J, Sun M, Guo C, Yu A, Cao F, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–9.Google Scholar
  101. 101.
    Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.Google Scholar
  102. 102.
    Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.Google Scholar
  103. 103.
    Bansal AK, Munjal B. Preparation of solid lipid nanoparticles for enhancement of oral bioavailability of curcumin. In: He J, editor. The 1st Electronic Conference on Pharmaceutical Sciences; 2011 Mar 1–31. Basel: Multidisciplinary Digital Publishing Institute; 2011.Google Scholar
  104. 104.
    Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm. 2017;117:132–40.  https://doi.org/10.1016/j.ejpb.2017.04.013.Google Scholar
  105. 105.
    Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch Biochem Biophys. 2018;648:12–9.  https://doi.org/10.1016/j.abb.2018.04.012.Google Scholar
  106. 106.
    Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016;23(2):459–70.  https://doi.org/10.3109/10717544.2014.918677.Google Scholar
  107. 107.
    Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503.  https://doi.org/10.1002/mnfr.201000310.Google Scholar
  108. 108.
    Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int. 2016;84:113–9.  https://doi.org/10.1016/j.foodres.2016.03.031.Google Scholar
  109. 109.
    Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402.  https://doi.org/10.1007/s11095-014-1469-1.Google Scholar
  110. 110.
    Beloqui A, Memvanga PB, Coco R, Reimondez-Troitino S, Alhouayek M, Muccioli GG, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces. 2016;143:327–35.  https://doi.org/10.1016/j.colsurfb.2016.03.038.Google Scholar
  111. 111.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.Google Scholar
  112. 112.
    Heuschkel S, Goebel A, Neubert RH. Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.Google Scholar
  113. 113.
    Moulik S, Paul B. Structure, dynamics and transport properties of microemulsions. Adv Colloids Interface Sci. 1998;78(2):99–195.Google Scholar
  114. 114.
    Kurita T, Makino Y. Novel curcumin oral delivery systems. Anticancer Res. 2013;33(7):2807–21.Google Scholar
  115. 115.
    Shinde RL, Jindal A, Devarajan PV. Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr Nanosci. 2011;7(1):119–33.Google Scholar
  116. 116.
    Muzaffar F, Singh U, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci. 2013;5(3):39–53.Google Scholar
  117. 117.
    Madhav S, Gupta D. A review on microemulsion based system. Int J Pharm Sci Res. 2011;2(8):1888.Google Scholar
  118. 118.
    Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm. 2007;345(1–2):9–25.Google Scholar
  119. 119.
    He C-X, He Z-G, Gao J-Q. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445–60.Google Scholar
  120. 120.
    Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharm. 2017;8(1):39.Google Scholar
  121. 121.
    Shinde RL, Devarajan PV. Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Deliv. 2017;24(1):152–61.  https://doi.org/10.1080/10717544.2016.1233593.Google Scholar
  122. 122.
    Shinde RL, Bharkad GP, Devarajan PV. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: role of docosahexaenoic acid. Eur J Pharm Biopharm. 2015;96:363–79.  https://doi.org/10.1016/j.ejpb.2015.08.008.Google Scholar
  123. 123.
    Bera A, Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol. 2015;5(3):255–68.Google Scholar
  124. 124.
    Bergonzi MC, Hamdouch R, Mazzacuva F, Isacchi B, Bilia AR. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT Food Sci Technol. 2014;59(1):148–55.  https://doi.org/10.1016/j.lwt.2014.06.009.Google Scholar
  125. 125.
    Hu L, Jia Y, Niu F, Jia Z, Yang X, Jiao K. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem. 2012;60(29):7137–41.  https://doi.org/10.1021/jf204078t.Google Scholar
  126. 126.
    Xiao Y, Chen X, Yang L, Zhu X, Zou L, Meng F, et al. Preparation and oral bioavailability study of curcuminoid-loaded microemulsion. J Agric Food Chem. 2013;61(15):3654–60.Google Scholar
  127. 127.
    Chouksey R, Pandey H, Jain A, Soni H, Saraogi G. Preparation and evaluation of the self-emulsifying drug delivery system containing atorvastatin HMG-CoA inhibiter. Int J Pharm Pharm Sci. 2011;3(3):147–52.Google Scholar
  128. 128.
    Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.Google Scholar
  129. 129.
    Patel PA, Chaulang G, Akolkotkar A, Mutha S, Hardikar S, Bhosale A. Self emulsifying drug delivery system: a review. Res J Pharm Technol. 2008;1(4):313–23.Google Scholar
  130. 130.
    Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–55.  https://doi.org/10.1016/j.ijpharm.2008.12.009.Google Scholar
  131. 131.
    Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm. 2010;76(3):475–85.  https://doi.org/10.1016/j.ejpb.2010.07.011.Google Scholar
  132. 132.
    Wu X, Xu J, Huang X, Wen C. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Drug Dev Ind Pharm. 2011;37(1):15–23.  https://doi.org/10.3109/03639045.2010.489560.Google Scholar
  133. 133.
    Thakur N, Garg G, Sharma P, Kumar N. Nanoemulsions: a review on various pharmaceutical application. Glob J Pharmacol. 2012;6(3):222–5.Google Scholar
  134. 134.
    Devarajan P, Shinde R. Advances in microemulsions and nanoemulsions for improved therapy in brain cancer. Advanced anticancer approaches with multifunctional lipid nanocarriers. London: i Smithers—Creative Publishing Solutions; 2011. p. 347–94.Google Scholar
  135. 135.
    Sharma N, Mishra S, Sharma S, Deshpande RD, Sharma RK. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res. 2013;5(4):37–48.Google Scholar
  136. 136.
    Wilking J, Graves S, Chang C, Meleson K, Lin M, Mason T. Dense cluster formation during aggregation and gelation of attractive slippery nanoemulsion droplets. Phys Rev Lett. 2006;96(1):015501.Google Scholar
  137. 137.
    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1–2):241–51.Google Scholar
  138. 138.
    Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.Google Scholar
  139. 139.
    Reza KH. Nanoemulsion as a novel transdermal drug delivery system. Int J Pharm Sci Res. 2011;2(8):1938.Google Scholar
  140. 140.
    Jintapattanakit A, Hasan HM, Junyaprasert VB. Vegetable oil-based nanoemulsions containing curcuminoids: formation optimization by phase inversion temperature method. J Drug Deliv Sci Technol. 2018;44:289–97.  https://doi.org/10.1016/j.jddst.2017.12.018.Google Scholar
  141. 141.
    Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012;60(21):5373–9.  https://doi.org/10.1021/jf300609p.PubMedGoogle Scholar
  142. 142.
    Young NA, Bruss MS, Gardner M, Willis WL, Mo X, Valiente GR, et al. Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced NFkappaB signaling and macrophage migration. PLoS One. 2014;9(11):e111559.  https://doi.org/10.1371/journal.pone.0111559.Google Scholar
  143. 143.
    Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P, et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol. 2012;69(3):679–89.  https://doi.org/10.1007/s00280-011-1749-y.Google Scholar
  144. 144.
    Langella A, Calcagno V, De Gregorio V, Urciuolo F, Imparato G, Vecchione R, et al. In vitro study of intestinal epithelial interaction with engineered oil in water nanoemulsions conveying curcumin. Colloids Surf B Biointerfaces. 2018;164:232–9.  https://doi.org/10.1016/j.colsurfb.2018.01.028.Google Scholar
  145. 145.
    Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccines Immunother. 2014;10(2):321–32.Google Scholar
  146. 146.
    Hanemann T, Szabó DV. Polymer–nanoparticle composites: from synthesis to modern applications. Materials. 2010;3(6):3468–517.Google Scholar
  147. 147.
    Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.Google Scholar
  148. 148.
    Mohanraj V, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.Google Scholar
  149. 149.
    Mallakpour S, Behranvand V. Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett. 2016;10(11):895.Google Scholar
  150. 150.
    Bharadwaj V, Ravikumar M. Polymeric nanoparticles for oral delivery. New York: Taylor and Francis; 2006.Google Scholar
  151. 151.
    Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng. 2015;54(4):325–41.Google Scholar
  152. 152.
    Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 2011;1(6):228–34.Google Scholar
  153. 153.
    Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;2017:129.Google Scholar
  154. 154.
    Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res. 2012;5(3):16–23.Google Scholar
  155. 155.
    Tiruwa R. A review on nanoparticles—preparation and evaluation parameters. Indian J Pharm Biol Res. 2016;4(2):27.Google Scholar
  156. 156.
    D’Souza AA, Jain P, Galdhar CN, Samad A, Degani MS, Devarajan PV. Comparative in silico–in vivo evaluation of ASGP-R ligands for hepatic targeting of curcumin Gantrez nanoparticles. AAPS J. 2013;15(3):696–706.  https://doi.org/10.1208/s12248-013-9474-6.Google Scholar
  157. 157.
    Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci. 2012;1(4):217.Google Scholar
  158. 158.
    Fan Y, Yi J, Zhang Y, Yokoyama W. Fabrication of curcumin-loaded bovine serum albumin (BSA)–dextran nanoparticles and the cellular antioxidant activity. Food Chem. 2018;239:1210–8.  https://doi.org/10.1016/j.foodchem.2017.07.075.Google Scholar
  159. 159.
    Chang C, Wang T, Hu Q, Luo Y. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: effect of polysaccharide type and chemical cross-linking. Food Hydrocoll. 2017;72:254–62.  https://doi.org/10.1016/j.foodhyd.2017.05.039.Google Scholar
  160. 160.
    Baspinar Y, Ustundas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: development and in-vitro characterisation. Saudi Pharm J. 2018;26(3):323–34.  https://doi.org/10.1016/j.jsps.2018.01.010.Google Scholar
  161. 161.
    Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K. Enhancement of anticancer activity and drug delivery of chitosan–curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym. 2018;182:188–98.  https://doi.org/10.1016/j.carbpol.2017.10.102.Google Scholar
  162. 162.
    Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol. 2013;18(3):591–9.Google Scholar
  163. 163.
    Facchi SP, Scariot DB, Bueno PV, Souza PR, Figueiredo LC, Follmann HD, et al. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int J Biol Macromol. 2016;87:237–45.  https://doi.org/10.1016/j.ijbiomac.2016.02.063.Google Scholar
  164. 164.
    Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym. 2013;95(1):441–8.  https://doi.org/10.1016/j.carbpol.2013.02.029.Google Scholar
  165. 165.
    Li J, Jiang F, Chi Z, Han D, Yu L, Liu C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int J Biol Macromol. 2018;112:413–21.  https://doi.org/10.1016/j.ijbiomac.2018.02.002.Google Scholar
  166. 166.
    Umerska A, Gaucher C, Oyarzun-Ampuero F, Fries-Raeth I, Colin F, Villamizar-Sarmiento MG, et al. Polymeric nanoparticles for increasing oral bioavailability of curcumin. Antioxidants. 2018;7(4):46.Google Scholar
  167. 167.
    Razi MA, Wakabayashi R, Tahara Y, Goto M, Kamiya N. Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids Surf B Biointerfaces. 2018;164:308–15.  https://doi.org/10.1016/j.colsurfb.2018.01.041.Google Scholar
  168. 168.
    Ren D, Qi J, Xie A, Jia M, Yang X, Xiao H. Encapsulation in lysozyme/A. sphaerocephala Krasch polysaccharide nanoparticles increases stability and bioefficacy of curcumin. J Funct Foods. 2017;38:100–9.  https://doi.org/10.1016/j.jff.2017.09.004.
  169. 169.
    Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci Rep. 2017;7(1):10062.  https://doi.org/10.1038/s41598-017-10672-9.Google Scholar
  170. 170.
    Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jorgensen HG, Venkatpurwar VP, et al. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of type 1 diabetes mellitus. Br J Pharmacol. 2017;174(13):2074–84.  https://doi.org/10.1111/bph.13816.
  171. 171.
    Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.  https://doi.org/10.1016/j.ejps.2009.02.019.Google Scholar
  172. 172.
    Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60.  https://doi.org/10.1016/j.colsurfb.2012.06.024.Google Scholar
  173. 173.
    Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem. 2011;127(3):918–25.  https://doi.org/10.1016/j.foodchem.2011.01.059.Google Scholar
  174. 174.
    Liu C, Yang X, Wu W, Long Z, Xiao H, Luo F, et al. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll. 2018;77:834–42.  https://doi.org/10.1016/j.foodhyd.2017.11.027.Google Scholar
  175. 175.
    Peng S, Li Z, Zou L, Liu W, Liu C, McClements DJ. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018;9(3):1829–39.  https://doi.org/10.1039/c7fo01814b.Google Scholar
  176. 176.
    Jaiswal S, Mishra P. Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. Mater Sci Eng C. 2018;92:673–84.  https://doi.org/10.1016/j.msec.2018.07.025.Google Scholar
  177. 177.
    Sarika PR, James NR. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr Polym. 2016;148:354–61.  https://doi.org/10.1016/j.carbpol.2016.04.073.Google Scholar
  178. 178.
    Chaurasia S, Patel RR, Chaubey P, Kumar N, Khan G, Mishra B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr Polym. 2015;130:9–17.  https://doi.org/10.1016/j.carbpol.2015.04.062.Google Scholar
  179. 179.
    Zhang J, Chen L, Tse WH, Bi R, Chen L. Inorganic nanoparticles: engineering for biomedical applications. IEEE Nanatechnol Mag. 2014;8(4):21–8.Google Scholar
  180. 180.
    Pranatharthiharan S, Patel MD, D’Souza AA, Devarajan PV. Inorganic nanovectors for nucleic acid delivery. Drug Deliv Transl Res. 2013;3(5):446–70.Google Scholar
  181. 181.
    Paul W, Sharma C. Inorganic nanoparticles for targeted drug delivery. Biointegration of medical implant materials. Amsterdam: Elsevier; 2010. p. 204–35.Google Scholar
  182. 182.
    Pandey P, Dahiya M. A brief review on inorganic nanoparticles. J Crit Rev. 2016;3(3):2016.Google Scholar
  183. 183.
    Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.Google Scholar
  184. 184.
    Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012;7(5):467–80.Google Scholar
  185. 185.
    Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013:340315.Google Scholar
  186. 186.
    Mondon K, Gurny R, Möller M. Colloidal drug delivery systems—recent advances with polymeric micelles. CHIMIA Int J Chem. 2008;62(10):832–40.Google Scholar
  187. 187.
    Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Patents Nanomed. 2012;2(2):82–95.Google Scholar
  188. 188.
    Duan Y, Zhang B, Chu L, Tong HH, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids Surf B. 2016;141:345–54.Google Scholar
  189. 189.
    Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–11.  https://doi.org/10.1016/j.phymed.2015.08.006.Google Scholar
  190. 190.
    Wei TK, Manickam S. Response surface methodology, an effective strategy in the optimization of the generation of curcumin-loaded micelles. Asia Pac J Chem Eng. 2012;7:S125–33.Google Scholar
  191. 191.
    Parikh A, Kathawala K, Song Y, Zhou X-F, Garg S. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability. Drug Deliv Transl Res. 2018;8:1389–405.Google Scholar
  192. 192.
    Krause K, Müller R. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int J Pharm. 2001;214(1–2):21–4.Google Scholar
  193. 193.
    Shariffa Y, Tan T, Uthumporn U, Abas F, Mirhosseini H, Nehdi I, et al. Producing a lycopene nanodispersion: formulation development and the effects of high pressure homogenization. Food Res Int. 2017;101:165–72.Google Scholar
  194. 194.
    Allam AN, Komeil IA, Fouda MA, Abdallah OY. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int J Pharm. 2015;489(1–2):117–23.  https://doi.org/10.1016/j.ijpharm.2015.04.067.Google Scholar
  195. 195.
    Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG, et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209.Google Scholar
  196. 196.
    Tan KW, Tang SY, Thomas R, Vasanthakumari N, Manickam S. Curcumin-loaded sterically stabilized nanodispersion based on non-ionic colloidal system induced by ultrasound and solvent diffusion-evaporation. Pure Appl Chem. 2016;88(1–2):43–60.Google Scholar
  197. 197.
    Bhingardeve D, Patil S, Patil R, Patil S. Phytosome-valuable phyto-phospholipid carriers. Curr Pharm Res. 2014;5(1):1386.Google Scholar
  198. 198.
    Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–9.  https://doi.org/10.1016/j.fitote.2010.05.001.Google Scholar
  199. 199.
    Gandhi A, Dutta A, Pal A, Bakshi P. Recent trends of phytosomes for delivering herbal extract with improved bioavailability. J Pharmacogn Phytochem. 2012;1(4):6.Google Scholar
  200. 200.
    Jain N, Gupta BP, Thakur N, Jain R, Banweer J, Jain DK, et al. Phytosome: a novel drug delivery system for herbal medicine. Int J Pharm Sci Drug Res. 2010;2(4):224–8.Google Scholar
  201. 201.
    Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007;60(2):171–7.Google Scholar
  202. 202.
    Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226–46.Google Scholar
  203. 203.
    Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, et al. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 2011;74(4):664–9.Google Scholar
  204. 204.
    Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.  https://doi.org/10.1016/j.ijpharm.2006.09.025.
  205. 205.
    Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin–phospholipid complex in rats. J Pharm Pharmacol. 2006;58(9):1227–33.Google Scholar
  206. 206.
    Bhattacharya S. Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009;2(3):225–32.Google Scholar
  207. 207.
    Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.Google Scholar
  208. 208.
    Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci. 2013;3(09):142–9.Google Scholar
  209. 209.
    Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.Google Scholar
  210. 210.
    Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev. 2013;14(11):6925–8.  https://doi.org/10.7314/apjcp.2013.14.11.6925.Google Scholar
  211. 211.
    Gamage NH, Jing L, Worsham MJ, Ali MM. Targeted theranostic approach for glioma using dendrimer-based curcumin nanoparticle. J Nanomed Nanotechnol. 2016;7(4):393.  https://doi.org/10.4172/2157-7439.1000393.Google Scholar
  212. 212.
    Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, et al. Dendrimer–curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anti-Cancer Agents Med Chem. 2013;13(10):1531–9.Google Scholar
  213. 213.
    Mollazade M, Zarghami N, Nasiri M, Nejati K, Rahmati M, Pourhasan M. Polyamidoamine (PAMAM) encapsulated curcumin inhibits telomerase activity in breast cancer cell line. Clin Biochem. 2011;13(44):S217.Google Scholar
  214. 214.
    Esmatabadi MJD, Motamedrad M, Sadeghizadeh M. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine. 2018;42:56–65.  https://doi.org/10.1016/j.phymed.2018.03.022.Google Scholar
  215. 215.
    O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15(5):405–15.Google Scholar
  216. 216.
    Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. Int J Biol Macromol. 2017;105(Pt 1):757–63.  https://doi.org/10.1016/j.ijbiomac.2017.07.101.Google Scholar
  217. 217.
    Bachhav SS, Dighe VD, Devarajan PV. Exploring Peyer’s patch uptake as a strategy for targeted lung delivery of polymeric rifampicin nanoparticles. Mol Pharm. 2018;15(10):4434–45.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinod S. Ipar
    • 1
  • Anisha Dsouza
    • 2
  • Padma V. Devarajan
    • 1
    Email author
  1. 1.Institute of Chemical TechnologyMumbaiIndia
  2. 2.Piramal Enterprises LimitedMumbaiIndia

Personalised recommendations