Advertisement

The transcription factor CsBzip10 controls vegetative growth, asexual development, appressorium formation and pathogenicity in the Rosa chinensis anthracnose fungus Colletotrichum siamense

  • R. F. Liu
  • He LiEmail author
Original Paper
  • 12 Downloads

Abstract

Transcription factors play crucial roles in development and virulence in a variety of pathogens. Here, we identified and characterized the transcription factor CsBzip10 in Colletotrichum siamense. CsBZIP10 encodes a 316-amino acid protein with a conserved bZIP-ATF2 domain, which is an ortholog of MoBzip10 in the rice blast fungus Magnaporthe oryzae. Targeted deletion of CsBZIP10 revealed that vegetative growth, conidiation and appressorium formation of the ΔCsbzip10 mutant were significantly reduced. The ΔCsbzip10 mutant had decreased sensitivity to the cell wall disturbing agent SDS and oxidative stress (H2O2), and increased sensitivity to osmotic stress (NaCl and KCl). Virulence and infectious hyphal growth of the ΔCsbzip10 mutant was remarkably decreased on Rosa chinensis leaves. CsBzip10 is a key transcription factor, that plays pleiotropic roles in the evelopment and pathogenicity of the R. chinensis anthracnose fungus C. siamense.

Keywords

Transcription factor Vegetative growth Asexual development Appressorium formation Pathogenicity 

Notes

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Grant number: 31570641).

Supplementary material

13313_2019_663_MOESM1_ESM.docx (422 kb)
Fig. S1 (DOCX 421 kb)
13313_2019_663_MOESM2_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)

References

  1. Anton J, Rossello-Mora R, Rodriguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057CrossRefPubMedCentralGoogle Scholar
  2. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532CrossRefPubMedCentralGoogle Scholar
  3. Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum - current status and future directions. Stud Mycol 73:181–213CrossRefPubMedCentralGoogle Scholar
  4. Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J (2016) Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol 211:1035–1051CrossRefGoogle Scholar
  5. Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012a) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113CrossRefPubMedCentralGoogle Scholar
  6. Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012b) The Colletotrichum boninense species complex. Stud Mycol 73:1–36CrossRefPubMedCentralGoogle Scholar
  7. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430CrossRefGoogle Scholar
  8. Dwarka DJ, Sharma G, Rajasab AH (2016) Colletotrichum siamense causes anthracnose on the fruits of Pongamia pinnata in India. Mycosphere 7:492–498CrossRefGoogle Scholar
  9. Fan XW (2018) A brief history of Chinese rose communication: from Slater’s China rose to Chinese red. J ZhongZhou Univ 35:86–89Google Scholar
  10. Fang YL, Xia LM, Wang P, Zhu LH, Ye JR, Huang L (2018) The MAPKKK CgMck1 is required for cell wall integrity, appressorium development, and pathogenicity in Colletotrichum gloeosporioides. Genes-Basel 9.  https://doi.org/10.3390/Genes9110543
  11. Feng FS (2019) First report of Colletotrichum siamense causing anthracnose on Rosa chinensis in China. Plant Dis.  https://doi.org/10.1094/PDIS-11-18-1966-PDN
  12. Guo M, Guo W, Chen Y, Dong SM, Zhang X, Zhang HF, Song WW, Wang W, Wang Q, Lv RL, Zhang ZG, Wang YC, Zheng XB (2010) The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe In 23:1053–1068CrossRefGoogle Scholar
  13. Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1001302CrossRefPubMedCentralGoogle Scholar
  14. Huang L, Li QC, Zhang Y, Li DW, Ye JR (2016) Colletotrichum gloeosporioides sensu stricto is a pathogen of leaf anthracnose on evergreen spindle tree (Euonymus japonicus). Plant Dis 100:672–678CrossRefGoogle Scholar
  15. Kong S, Park SY, Lee YH (2015) Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol 17:1425–1443CrossRefGoogle Scholar
  16. Li H, Zhou GY, Liu JA, Xu J (2016) Population genetic analyses of the fungal pathogen Colletotrichum fructicola on tea-oil trees in China. PLoS One 11:e0156841CrossRefPubMedCentralGoogle Scholar
  17. Lu J, Cao H, Zhang L, Huang P, Lin F (2014) Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 10:e1004432CrossRefPubMedCentralGoogle Scholar
  18. O'Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544CrossRefGoogle Scholar
  19. Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140Google Scholar
  20. Tang W, Ru YY, Hong L, Zhu Q, Zuo RF, Guo XX, Wang JZ, Zhang HF, Zheng XB, Wang P, Zhang ZG (2015) System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 17:1377–1396CrossRefGoogle Scholar
  21. Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180CrossRefPubMedCentralGoogle Scholar
  22. Yan JY, Jayawardena MMRS, Goonasekara ID, Wang Y, Zhang W, Liu M, Huang JB, Wang ZY, Shang JJ, Peng YL, Bahkali A, Hyde KD, Li XH (2015) Diverse species of Colletotrichum associated with grapevine anthracnose in China. Fungal Divers 71:233–246CrossRefGoogle Scholar
  23. Yang JY, Fang YL, Wang P, Ye JR, Huang L (2018) Pleiotropic roles of ChSat4 in asexual development, cell wall integrity maintenance, and pathogenicity in Colletotrichum higginsianum. Front Microbiol 9:2311CrossRefPubMedCentralGoogle Scholar
  24. Zhang H, Zhao Q, Liu K, Zhang Z, Wang Y, Zheng X (2009) MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett 293:160–169CrossRefGoogle Scholar
  25. Zhang H, Liu K, Zhang X, Tang W, Wang J, Guo M, Zhao Q, Zheng X, Wang P, Zhang Z (2011) Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS One 6:e17241CrossRefPubMedCentralGoogle Scholar
  26. Zhang HF, Zhao Q, Guo XX, Guo M, Qi ZQ, Tang W, Dong YH, Ye WW, Zheng XB, Wang P, Zhang ZG (2014) Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol Plant Microbe In 27:446–460CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2019

Authors and Affiliations

  1. 1.Central South University of Forestry and TechnologyChangshaChina
  2. 2.Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina

Personalised recommendations