Mating type a locus alleles and genomic polymorphism in Sporisorium reilianum: comparison of sorghum isolates to those from maize

  • Ghada L. Radwan
  • Louis K. PromEmail author
  • Gary Odvody
  • Clint W. Magill
Original Paper


Sporisorium reilianum causes head smut in sorghum and maize and exists in two formae speciales, Sporisorium reilianum f. sp. reilianum and Sporisorium reilianum f. sp. zeae that have preference for sorghum and maize, respectively. Infection requires the formation of a dikaryon between sporidia of compatible mating types, leading to a change from yeast-like to hyphal growth within the host plant. This switching is controlled through mating type loci. A total of 66 sorghum isolates of S. reilianum collected from fields in different geographic regions and 2 maize isolates were examined for mating compatibility, leading to the establishment of haploid cultures with three different alleles at the a mating type locus, as verified by gene expression. Interestingly, a mating compatibility was detected between maize and sorghum isolates. Comparison of amino acid sequences, deduced from nucleotide sequencing of pheromone precursor genes of sorghum to the corresponding components in maize, showed 100% similarity of pheromone components mfa1.2, mfa2.1, mfa3.1 and 97% for mfa1.3, mfa3.2 and mfa2.3. Only 1 amino acid substitution was detected in sorghum mfa1.3. To assay host preference in relationship to whole genome polymorphism, six amplified fragment length polymorphism (AFLP) selective primer combinations were used on DNA of S. reilianum isolates. High genetic polymorphism (61%) was observed between sorghum and maize isolates. The resultant dendrogram constructed using neighbor-joining (NJ) analysis grouped maize isolates into one cluster with high similarity (>88%) while sorghum isolates grouped into four clusters suggesting that genetic differentiation contributes to host specific populations of S. reilianum.


Head smut Mating-types Basidiomycete AFLPs 



The authors extend their sincere thanks to Dr. Ramasamy Perumal, KSU for his instructions for AFLP analysis and Global Crop Diversity Trust and USDA, ARS for the project funding support.


  1. Banuett F, Herskovits I (1994) Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp Mycol 18:247–266CrossRefGoogle Scholar
  2. Banuett F, Herskowitz I (1989) Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A 86:5878–5882CrossRefGoogle Scholar
  3. Casselton L, Olesnicky N (1998) Molecular genetics of mating recognition in basidiomycete Fungi. Microbiol Mol Biol Rev 62:55–70PubMedPubMedCentralGoogle Scholar
  4. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469CrossRefGoogle Scholar
  5. Dodman RL, Obst NR, Henzell RG (1985) Races of sorghum head smut (Sphacelotheca reiliana) in southeast Queensland Australas. Plant Pathol 2:45Google Scholar
  6. Frederiksen RA (2000) Disease and disease management in sorghum. In: Smith C, Frederiksen RA (eds) Sorghum– origin, history, technology and production. USA. Wiley J & Sons, New York, pp 497–533Google Scholar
  7. Frowd JA (1980) A world review of sorghum smuts. In: Williams RJ, Frederiksen RA, Mughogho LK (eds) Sorghum diseases: A world review. ICRISAT, Patancheru, pp 331–348Google Scholar
  8. Hanna WF (1929) Studies in the physiology and cytology of Ustilago zeae and Sorosporium reilianum. Phytopathol 19:415–443Google Scholar
  9. Hartmann HA, Kahmann R, Bolker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15:1632–1641CrossRefGoogle Scholar
  10. Herrera JA, Vallejo AB (1988) Distribution of race of head smut (Sphacelotheca reliliana) in the northeast and southwest areas of Mexico. Sorghum Newsl 29:86Google Scholar
  11. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270Google Scholar
  12. Kellner R, Vollmeister E, Feldbrügge M, Begerow D (2012) Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 7(12)Google Scholar
  13. Koopman W, Gort G (2004) Significance tests and weighted values for AFLP similarities based on Arabidopsis in silico- AFLP fragment length distributions. Genetics 167:1915–1928CrossRefGoogle Scholar
  14. Kües U, James TY, Heitman J (2011) Mating type in Basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) Evolution of Fungi and fungal-like organisms. Springer Verlag, Berlin, pp 97–160 (The Mycota; vol. 14)CrossRefGoogle Scholar
  15. Little C, Perumal R, Tesso T, Prom LK, Odvody GN, Magill C (2012) Sorghum pathology and biotechnology – a fungal disease perspective: part 1. Grain mold, head smut, and ergot. Eur J Plant Sci Biotech 6:10–30Google Scholar
  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408CrossRefGoogle Scholar
  17. Martinez C, Roux C, Dargent R (1999) Biotrophic development of Sporisorium reilianum zeae in maize shoot apex. Phytopathol 89:247–253CrossRefGoogle Scholar
  18. Martinez C, Roux C, Jauneau A, Dargent R (2002) The biological cycle of Sporisorium reilianum f. sp. zeae: an overview using microscopy. Mycologia 94:505–514CrossRefGoogle Scholar
  19. Naidoo G (1992) Identification and differentiation of host-specific isolates of Sporisorium reilianum using molecular markers. Dissertation, Texas A&M UniversityGoogle Scholar
  20. Naidoo G, Torres-Montalvo H (2002) Genetic variability among and within host specialized isolates of Sporisorium reilianum. In: Leslie JF, Blackwell A (eds) Sorghum and millets diseases. Iowa State Press, Ames, pp 221–225Google Scholar
  21. Poloni A, Schirawski J (2016) Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. MolPlant Pathol 17:741–754Google Scholar
  22. Prom LK, Perumal R, Erattaimuthu SR, Erpelding JE, Montes N, Odvody GN, Greenwald C, Jin Z, Frederiksen R, Magill CW (2011) Virulence and molecular genotyping studies of Sporisorium reilianum isolates in sorghum. Plant Dis 95:523–529CrossRefGoogle Scholar
  23. Puhalla JE (1968) Compatibility reactions on solid medium and inter strain inhibition in Ustilago maydis. Genetics 60:461–474PubMedPubMedCentralGoogle Scholar
  24. Quezada-Salinas A (2010) Selection of resistant maize germplasm to head smut (S. reilianum f. Sp.zea). Colegio De Pastgraduados, Campus Montecillo, Mexico PhD thesisGoogle Scholar
  25. Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9:847–859CrossRefGoogle Scholar
  26. Rich P, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3:618–621CrossRefGoogle Scholar
  27. Schirawski J, Heinze B, Wagenknecht M, Kahmann R (2005) Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4:1317–1327CrossRefGoogle Scholar
  28. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548CrossRefGoogle Scholar
  29. Snetselaar KM, Mims CW (1992) Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84:193–203CrossRefGoogle Scholar
  30. Stromberg EL, Stienstra WC, Kommedahl T, Matyac CA, Windels CE, Gealdelmann JL (1984) Smut expression and resistance of corn to Sphacelotheca reiliana in Minnesota. Plant Dis 68:880–884CrossRefGoogle Scholar
  31. Teferi A, Petitprez M, Valles V, Albertini L (1989) Influence of soil water potential and soil texture on infection of maize by head smut. Agronomie 9:677–682CrossRefGoogle Scholar
  32. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefGoogle Scholar
  33. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  34. Zarnack K, Eichhorn H, Kahmann K, Feldbrügge M (2008) Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. MolMicrobiol 69:1041–1053Google Scholar
  35. Zhang F, Ping J, Du Z, Cheng Q, Huang Y (2011) Identification of a new race of Sporisorium reilianum and characterization of the reaction of sorghum lines to four races of the head smut pathogen. J Phytopathol 159:342–346CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2019

Authors and Affiliations

  1. 1.Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of MicrobiologyPort Said UniversityPort SaidEgypt
  3. 3.USDA-ARS, Southern Plains Agricultural Research CenterCollege StationUSA
  4. 4.Texas A&M Research and Extension CenterCorpus ChristiUSA

Personalised recommendations