Advertisement

GPCR and Alcohol-Related Behaviors in Genetically Modified Mice

  • Jérémie Neasta
  • Emmanuel Darcq
  • Jérôme Jeanblanc
  • Sebastien Carnicella
  • Sami Ben HamidaEmail author
Review
  • 40 Downloads

Abstract

G protein–coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.

Key Words

GPCR alcohol mice addiction knockout 

Notes

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2019_828_MOESM1_ESM.pdf (569 kb)
ESM 1 (PDF 568 kb)

References

  1. 1.
    Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs—theoretical and experimental studies. Curr Med Chem 2012;19(8):1090–109.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19(10):638–53.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Smith JS, Rajagopal S. The beta-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J Biol Chem 2016;291(17):8969–77.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res 2018;46(D1):D1091-D106.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Albizu L, Moreno JL, Gonzalez-Maeso J, Sealfon SC. Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS Neurol Disord Drug Targets 2010;9(5):636–50.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Damian M, Pons V, Renault P, M’Kadmi C, Delort B, Hartmann L, et al. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proc Natl Acad Sci U S A 2018;115(17):4501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev. 2018.Google Scholar
  8. 8.
    Ellis C, Smith A. Highlighting the pitfalls and possibilities of drug research. Nat Rev Drug Discov 2004;3(3):238–78.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017;16(12):829–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wacker D, Stevens RC, Roth BL. How Ligands Illuminate GPCR Molecular Pharmacology. Cell. 2017;170(3):414–27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Stoeber M, Jullie D, Lobingier BT, Laeremans T, Steyaert J, Schiller PW, et al. A Genetically Encoded Biosensor Reveals Location Bias of Opioid Drug Action. Neuron. 2018;98(5):963–76 e5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Urs NM, Gee SM, Pack TF, McCorvy JD, Evron T, Snyder JC, et al. Distinct cortical and striatal actions of a beta-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc Natl Acad Sci U S A 2016;113(50):E8178-E86.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Marcott PF, Gong S, Donthamsetti P, Grinnell SG, Nelson MN, Newman AH, et al. Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron. 2018;98(3):575–87 e4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A. A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol 2017;13(9):929–37.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Shoichet BK, Kobilka BK. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 2012;33(5):268–72.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Fricker LD, Devi LA. Orphan neuropeptides and receptors: Novel therapeutic targets. Pharmacol Ther 2018;185:26–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135(3):561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ehrlich AT, Maroteaux G, Robe A, Venteo L, Nasseef MT, van Kempen LC, et al. Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun Biol 2018;1:102.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rohrer DK, Kobilka BK. G Protein-Coupled Receptors: Functional and Mechanistic Insights Through Altered Gene Expression. Physiol Rev 1998;78(1):35–52.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wehner JM, Bowers BJ. Use of Transgenics, Null Mutants, and Antisense Approaches to Study Ethanol’s Actions. Alcohol Clin Exp Res 1995;19(4):811–20.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fernandez G, Cabral A, Andreoli MF, Labarthe A, M’Kadmi C, Ramos JG, et al. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice. Endocrinology. 2018;159(2):1021–34.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Godlewski G, Cinar R, Coffey NJ, Liu J, Jourdan T, Mukhopadhyay B, et al. Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis. Cell Metab. 2019;29(6):1320–33.e8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kern A, Albarran-Zeckler R, Walsh Heidi E, Smith Roy G. Apo-Ghrelin Receptor Forms Heteromers with DRD2 in Hypothalamic Neurons and Is Essential for Anorexigenic Effects of DRD2 Agonism. Neuron. 2012;73(2):317–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG. Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor. Cell. 2015;163(5):1176–90.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016;10:264.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ron D, Barak S. Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci 2016;17(9):576–91.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schuckit MA. Genetic aspects of alcoholism. Ann Emerg Med 1986;15(9):991–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cservenka A. Neurobiological phenotypes associated with a family history of alcoholism. Drug Alcohol Depend 2016;158:8–21.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Agrawal A, Hinrichs AL, Dunn G, Bertelsen S, Dick DM, Saccone SF, et al. Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. Drug Alcohol Depend 2008;93(1–2):12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. Int Rev Neurobiol 2016;126:293–355.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bowers BJ. Applications of transgenic and knockout mice in alcohol research. Alcohol Res Health 2000;24(3):175–84.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 2006;11(3–4):195–269.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Crabbe J, Belknap J, Buck K. Genetic animal models of alcohol and drug abuse. Science. 1994;264(5166):1715–23.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Crabbe JC, Phillips TJ, Feller DJ, Hen R, Wenger CD, Lessov CN, et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 1996;14(1):98–101.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015;172(16):3964–79.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Basavarajappa BS, Joshi V, Shivakumar M, Subbanna S. Distinct functions of endogenous cannabinoid system in alcohol abuse disorders. Br J Pharmacol 2019;176(17):3085–109.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Haass-Koffler CL, Bartlett SE. Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity. Front Mol Neurosci 2012;5:91.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci 2014;8:128.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Hollt V. Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedeberg's Arch Pharmacol 2002;365(4):296–302.CrossRefGoogle Scholar
  41. 41.
    Roberts AJ, McDonald JS, Heyser CJ, Kieffer BL, Matthes HW, Koob GF, et al. mu-Opioid receptor knockout mice do not self-administer alcohol. J Pharmacol Exp Ther 2000;293(3):1002–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Bilbao A, Robinson JE, Heilig M, Malanga CJ, Spanagel R, Sommer WH, et al. A pharmacogenetic determinant of mu-opioid receptor antagonist effects on alcohol reward and consumption: evidence from humanized mice. Biol Psychiatry 2015;77(10):850–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    van Rijn RM, Whistler JL. The delta(1) opioid receptor is a heterodimer that opposes the actions of the delta(2) receptor on alcohol intake. Biol Psychiatry 2009;66(8):777–84.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Roberts AJ, Gold LH, Polis I, McDonald JS, Filliol D, Kieffer BL, et al. Increased ethanol self-administration in delta-opioid receptor knockout mice. Alcohol Clin Exp Res 2001;25(9):1249–56.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kovacs KM, Szakall I, O’Brien D, Wang R, Vinod KY, Saito M, et al. Decreased oral self-administration of alcohol in kappa-opioid receptor knock-out mice. Alcohol Clin Exp Res 2005;29(5):730–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Grisel JE, Mogil JS, Grahame NJ, Rubinstein M, Belknap JK, Crabbe JC, et al. Ethanol oral self-administration is increased in mutant mice with decreased beta-endorphin expression. Brain Res 1999;835(1):62–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Racz I, Schurmann B, Karpushova A, Reuter M, Cichon S, Montag C, et al. The opioid peptides enkephalin and beta-endorphin in alcohol dependence. Biol Psychiatry 2008;64(11):989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Koenig HN, Olive MF. Ethanol consumption patterns and conditioned place preference in mice lacking preproenkephalin. Neurosci Lett 2002;325(2):75–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Femenia T, Manzanares J. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission. Addict Biol 2012;17(2):322–37.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Racz I, Markert A, Mauer D, Stoffel-Wagner B, Zimmer A. Long-term ethanol effects on acute stress responses: modulation by dynorphin. Addict Biol 2013;18(4):678–88.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology. 2008;33(4):877–91.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kallupi M, Scuppa G, de Guglielmo G, Calo G, Weiss F, Statnick MA, et al. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction. Neuropsychopharmacology. 2017;42(3):695–706.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Poncelet M, Maruani J, Calassi R, Soubrié P. Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett 2003;343(3):216–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND. Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res 2005;164(2):206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C. Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 2003;84(4):698–704.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Naassila M, Pierrefiche O, Ledent C, Daoust M. Decreased alcohol self-administration and increased alcohol sensitivity and withdrawal in CB1 receptor knockout mice. Neuropharmacology. 2004;46(2):243–53.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Racz I, Bilkei-Gorzo A, Toth ZE, Michel K, Palkovits M, Zimmer A. A Critical Role for the Cannabinoid CB1 Receptors in Alcohol Dependence and Stress-Stimulated Ethanol Drinking. J Neurosci 2003;23(6):2453–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ortega-Álvaro A, Ternianov A, Aracil-Fernández A, Navarrete F, García-Gutiérrez MS, Manzanares J. Role of cannabinoid CB2 receptor in the reinforcing actions of ethanol. Addict Biol 2015;20(1):43–55.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci 2009;106(27):11318–23.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zallar LJ, Tunstall BJ, Richie CT, Zhang YJ, You ZB, Gardner EL, et al. Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes (2005). 2018.Google Scholar
  61. 61.
    Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol. 2011;45(4):341–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bahi A, Tolle V, Fehrentz J-A, Brunel L, Martinez J, Tomasetto C-L, et al. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference. Peptides. 2013;43:48–55.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    El-Ghundi M, George SR, Drago J, Fletcher PJ, Fan T, Nguyen T, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol 1998;353(2–3):149–58.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Phillips TJ, Brown KJ, Burkhart-Kasch S, Wenger CD, Kelly MA, Rubinstein M, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1998;1(7):610–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Palmer AA, Low MJ, Grandy DK, Phillips TJ. Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behav Genet 2003;33(3):311–24.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Delis F, Thanos PK, Rombola C, Rosko L, Grandy D, Wang GJ, et al. Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels. Behav Neurosci 2013;127(1):95–105.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Thanos PK, Rivera SN, Weaver K, Grandy DK, Rubinstein M, Umegaki H, et al. Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: effects on ethanol drinking. Life Sci 2005;77(2):130–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Risinger FO, Freeman PA, Rubinstein M, Low MJ, Grandy DK. Lack of operant ethanol self-administration in dopamine D2 receptor knockout mice. Psychopharmacology 2000;152(3):343–50.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Leggio GM, Camillieri G, Platania CB, Castorina A, Marrazzo G, Torrisi SA, et al. Dopamine D3 receptor is necessary for ethanol consumption: an approach with buspirone. Neuropsychopharmacology. 2014;39(8):2017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Boyce-Rustay JM, Risinger FO. Dopamine D3 receptor knockout mice and the motivational effects of ethanol. Pharmacol Biochem Behav 2003;75(2):373–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    McQuade JA, Xu M, Woods SC, Seeley RJ, Benoit SC. Ethanol consumption in mice with a targeted disruption of the dopamine-3 receptor gene. Addict Biol 2003;8(3):295–303.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Thanos PK, Roushdy K, Sarwar Z, Rice O, Ashby CR, Jr., Grandy DK. The effect of dopamine D4 receptor density on novelty seeking, activity, social interaction, and alcohol binge drinking in adult mice. Synapse. 2015;69(7):356–64.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Risinger FO, Bormann NM, Oakes RA. Reduced Sensitivity to Ethanol Reward, But Not Ethanol Aversion, in Mice Lacking 5=HT1B Receptors. Alcohol Clin Exp Res 1996;20(8):1401–5.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bouwknecht JA, Hijzen TH, van der Gugten J, Maes RA, Hen R, Olivier B. Ethanol intake is not elevated in male 5-HT(1B) receptor knockout mice. Eur J Pharmacol 2000;403(1–2):95–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Bonasera SJ, Chu HM, Brennan TJ, Tecott LH. A null mutation of the serotonin 6 receptor alters acute responses to ethanol. Neuropsychopharmacology. 2006;31(8):1801–13.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bird MK, Kirchhoff J, Djouma E, Lawrence AJ. Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int J Neuropsychopharmacol 2008;11(6):765–74.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Blednov YA, Harris RA. Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: relationship to acamprosate actions. Int J Neuropsychopharmacol 2008;11(6):775–93.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Campbell RR, Domingo RD, Williams AR, Wroten MG, McGregor HA, Waltermire RS, et al. Increased Alcohol-Drinking Induced by Manipulations of mGlu5 Phosphorylation within the Bed Nucleus of the Stria Terminalis. J Neurosci 2019;39(14):2745–61.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhou Z, Karlsson C, Liang T, Xiong W, Kimura M, Tapocik JD, et al. Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc Natl Acad Sci U S A 2013;110(42):16963–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Blednov YA, Walker D, Osterndorf-Kahanek E, Harris RA. Mice lacking metabotropic glutamate receptor 4 do not show the motor stimulatory effect of ethanol. Alcohol. 2004;34(2–3):251–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadasz C. mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 2011;36(6):1087–100.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgansberger W, Wurst W, et al. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science. 2002;296(5569):931–3.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Molander A, Vengeliene V, Heilig M, Wurst W, Deussing JM, Spanagel R. Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking. Neuropsychopharmacology. 2012;37(4):1047–56.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Giardino WJ, Ryabinin AE. CRF1 receptor signaling regulates food and fluid intake in the drinking-in-the-dark model of binge alcohol consumption. Alcohol Clin Exp Res 2013;37(7):1161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kaur S, Li J, Stenzel-Poore MP, Ryabinin AE. Corticotropin-releasing factor acting on corticotropin-releasing factor receptor type 1 is critical for binge alcohol drinking in mice. Alcohol Clin Exp Res 2012;36(2):369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Pastor R, Reed C, Burkhart-Kasch S, Li N, Sharpe AL, Coste SC, et al. Ethanol concentration-dependent effects and the role of stress on ethanol drinking in corticotropin-releasing factor type 1 and double type 1 and 2 receptor knockout mice. Psychopharmacology 2011;218(1):169–77.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ. Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout. Pharmacol Biochem Behav 2007;86(4):813–21.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Olney JJ, Sprow GM, Navarro M, Thiele TE. The protective effects of the melanocortin receptor (MCR) agonist, melanotan-II (MTII), against binge-like ethanol drinking are facilitated by deletion of the MC3 receptor in mice. Neuropeptides. 2014;48(1):47–51.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Navarro M, Lerma-Cabrera JM, Carvajal F, Lowery EG, Cubero I, Thiele TE. Assessment of voluntary ethanol consumption and the effects of a melanocortin (MC) receptor agonist on ethanol intake in mutant C57BL/6J mice lacking the MC-4 receptor. Alcohol Clin Exp Res 2011;35(6):1058–66.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ben Hamida S, Mendonca-Netto S, Arefin TM, Nasseef MT, Boulos LJ, McNicholas M, et al. Increased Alcohol Seeking in Mice Lacking Gpr88 Involves Dysfunctional Mesocorticolimbic Networks. Biol Psychiatry 2018;84(3):202–12.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    de la Cour C, Sorensen G, Wortwein G, Weikop P, Dencker D, Fink-Jensen A, et al. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice. Eur J Pharmacol 2015;746:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Nuutinen S, Lintunen M, Vanhanen J, Ojala T, Rozov S, Panula P. Evidence for the role of histamine H3 receptor in alcohol consumption and alcohol reward in mice. Neuropsychopharmacology. 2011;36(10):2030–40.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Duncan EA, Sorrell JE, Adamantidis A, Rider T, Jandacek RJ, Seeley RJ, et al. Alcohol drinking in MCH receptor-1-deficient mice. Alcohol Clin Exp Res 2007;31(8):1325–37.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Maul B, Krause W, Pankow K, Becker M, Gembardt F, Alenina N, et al. Central angiotensin II controls alcohol consumption via its AT1 receptor. FASEB J 2005;19(11):1474–81.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sanbe A, Takagi N, Fujiwara Y, Yamauchi J, Endo T, Mizutani R, et al. Alcohol preference in mice lacking the Avpr1a vasopressin receptor. Am J Phys Regul Integr Comp Phys 2008;294(5):R1482–90.Google Scholar
  96. 96.
    Houchi H, Persyn W, Legastelois R, Naassila M. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals. Addict Biol 2013;18(5):812–25.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Naassila M, Ledent C, Daoust M. Low ethanol sensitivity and increased ethanol consumption in mice lacking adenosine A2A receptors. J Neurosci 2002;22(23):10487–93.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Houchi H, Warnault V, Barbier E, Dubois C, Pierrefiche O, Ledent C, et al. Involvement of A2A receptors in anxiolytic, locomotor and motivational properties of ethanol in mice. Genes Brain Behav 2008;7(8):887–98.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Thiele TE, Koh MT, Pedrazzini T. Voluntary alcohol consumption is controlled via the neuropeptide Y Y1 receptor. J Neurosci 2002;22(3):RC208.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Thiele TE, Naveilhan P, Ernfors P. Assessment of ethanol consumption and water drinking by NPY Y(2) receptor knockout mice. Peptides. 2004;25(6):975–83.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Thiele TE, Miura GI, Marsh DJ, Bernstein IL, Palmiter RD. Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharmacol Biochem Behav 2000;67(4):683–91.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Blednov YA, Bergeson SE, Walker D, Ferreira VM, Kuziel WA, Harris RA. Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 2005;165(1):110–25.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Miyasaka K, Hosoya H, Takano S, Ohta M, Sekime A, Kanai S, et al. Differences in ethanol ingestion between cholecystokinin-A receptor deficient and -B receptor deficient mice. Alcohol Alcohol 2005;40(3):176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Abramov U, Raud S, Innos J, Koks S, Matsui T, Vasar E. Gender specific effects of ethanol in mice, lacking CCK2 receptors. Behav Brain Res 2006;175(1):149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    George DT, Gilman J, Hersh J, Thorsell A, Herion D, Geyer C, et al. Neurokinin 1 receptor antagonism as a possible therapy for alcoholism. Science. 2008;319(5869):1536–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Thorsell A, Schank JR, Singley E, Hunt SP, Heilig M. Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice. Psychopharmacology 2010;209(1):103–11.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Lee MR, Hinton DJ, Song JY, Lee KW, Choo C, Johng H, et al. Neurotensin receptor type 1 regulates ethanol intoxication and consumption in mice. Pharmacol Biochem Behav 2010;95(2):235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lee MR, Hinton DJ, Unal SS, Richelson E, Choi DS. Increased ethanol consumption and preference in mice lacking neurotensin receptor type 2. Alcohol Clin Exp Res 2011;35(1):99–107.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci 2018;19(8):499–514.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bodnar RJ. Endogenous Opiates and Behavior: 2015. Peptides. 2017;88:126–88.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ehrlich AT, Kieffer BL, Darcq E. Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opin Ther Targets. 2019;23(4):315-26.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lutz PE, Kieffer BL. The multiple facets of opioid receptor function: implications for addiction. Curr Opin Neurobiol 2013;23(4):473–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000;25(2):195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL. The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 2011;32(10):581–90.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther 2013;140(1):112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012;69(6):857–96.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate receptors. Science. 1986;233(4765):774–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383(6603):819–23.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Jones MR, Viswanath O, Peck J, Kaye AD, Gill JS, Simopoulos TT. A Brief History of the Opioid Epidemic and Strategies for Pain Medicine. Pain Ther 2018;7(1):13–21.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ehrlich AT, Darcq E. Recommending buprenorphine for pain management. Pain Management 2019;9(1):13–16.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology. 2014;76 Pt B:204–17.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Contet C, Kieffer BL, Befort K. Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol 2004;14(3):370–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Hall FS, Sora I, Uhl GR. Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology 2001;154(1):43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Ghozland S, Chu K, Kieffer BL, Roberts AJ. Lack of stimulant and anxiolytic-like effects of ethanol and accelerated development of ethanol dependence in mu-opioid receptor knockout mice. Neuropharmacology. 2005;49(4):493–501.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron. 2006;51(4):455–66.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ben Hamida S, Boulos LJ, McNicholas M, Charbogne P, Kieffer BL. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol 2019;24(1):28–39.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zhou Y, Liang Y, Low MJ, Kreek MJ. Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking. Genes Brain Behav. 2019:e12600.Google Scholar
  128. 128.
    Angelogianni P, Gianoulakis C. Chronic ethanol increases proopiomelanocortin gene expression in the rat hypothalamus. Neuroendocrinology. 1993;57(1):106–14.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav 2014;123:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Reed B, Butelman ER, Yuferov V, Randesi M, Kreek MJ. Genetics of opiate addiction. Curr Psychiatry Rep 2014;16(11):504.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 2011;16(8):809–17.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Henderson-Redmond AN, Lowe TE, Tian XB, Morgan DJ. Increased ethanol drinking in “humanized” mice expressing the mu opioid receptor A118G polymorphism are mediated through sex-specific mechanisms. Brain Res Bull 2018;138:12–9.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Koob GF, Mason BJ. Existing and Future Drugs for the Treatment of the Dark Side of Addiction. Annu Rev Pharmacol Toxicol 2016;56:299–322.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci 2013;36(3):195–206.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Buckner JD, Schmidt NB, Lang AR, Small JW, Schlauch RC, Lewinsohn PM. Specificity of social anxiety disorder as a risk factor for alcohol and cannabis dependence. J Psychiatr Res 2008;42(3):230–9.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Saland LC, Abeyta A, Frausto S, Raymond-Stintz M, Hastings CM, Carta M, et al. Chronic ethanol consumption reduces delta-and mu-opioid receptor-stimulated G-protein coupling in rat brain. Alcohol Clin Exp Res 2004;28(1):98–104.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2018;247:199–225.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    van Rijn RM, Brissett DI, Whistler JL. Emergence of functional spinal delta opioid receptors after chronic ethanol exposure. Biol Psychiatry 2012;71(3):232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Bie B, Zhu W, Pan ZZ. Ethanol-induced delta-opioid receptor modulation of glutamate synaptic transmission and conditioned place preference in central amygdala. Neuroscience. 2009;160(2):348–58.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mendez M, Morales-Mulia M, Leriche M. [3H]DPDPE binding to delta opioid receptors in the rat mesocorticolimbic and nigrostriatal pathways is transiently increased by acute ethanol administration. Brain Res 2004;1028(2):180–90.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Sacharczuk M, Lesniak A, Lipkowski AW, Korostynski M, Przewlocki R, Sadowski B. Association between the A107V substitution in the delta-opioid receptors and ethanol drinking in mice selected for high and low analgesia. Addict Biol 2014;19(4):643–51.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Hayward MD, Hansen ST, Pintar JE, Low MJ. Operant self-administration of ethanol in C57BL/6 mice lacking beta-endorphin and enkephalin. Pharmacol Biochem Behav 2004;79(1):171–81.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Bazov I, Kononenko O, Watanabe H, Kuntic V, Sarkisyan D, Taqi MM, et al. The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict Biol 2013;18(1):161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Xuei X, Flury-Wetherill L, Bierut L, Dick D, Nurnberger J, Jr., Foroud T, et al. The opioid system in alcohol and drug dependence: family-based association study. Am J Med Genet B Neuropsychiatr Genet 2007;144B(7):877–84.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Bruchas MR, Roth BL. New Technologies for Elucidating Opioid Receptor Function. Trends Pharmacol Sci 2016;37(4):279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363–81.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017;41(8):1402–18.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Walker BM, Koob GF. Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence. Neuropsychopharmacology. 2008;33(3):643–52.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. Int Rev Neurobiol 2017;136:53–88.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Mitchell JM, Liang MT, Fields HL. A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology 2005;182(3):384–92.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Van’t Veer A, Smith KL, Cohen BM, Carlezon WA, Jr., Bechtholt AJ. Kappa-opioid receptors differentially regulate low and high levels of ethanol intake in female mice. Brain Behav 2016;6(9):e00523.CrossRefGoogle Scholar
  152. 152.
    Bloodgood DW, Pati D, Pina MM, Neira S, Hardaway JA, Desai S, et al. Kappa Opioid Receptor and Dynorphin Signaling in the Central Amygdala Regulates Alcohol Intake. BioRxiv. 2019.Google Scholar
  153. 153.
    Zapata A, Shippenberg TS. Endogenous kappa opioid receptor systems modulate the responsiveness of mesoaccumbal dopamine neurons to ethanol. Alcohol Clin Exp Res 2006;30(4):592–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Blednov YA, Walker D, Martinez M, Harris RA. Reduced alcohol consumption in mice lacking preprodynorphin. Alcohol. 2006;40(2):73–86.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Nguyen K, Tseng A, Marquez P, Hamid A, Lutfy K. The role of endogenous dynorphin in ethanol-induced state-dependent CPP. Behav Brain Res 2012;227(1):58–63.PubMedCrossRefGoogle Scholar
  156. 156.
    Sperling RE, Gomes SM, Sypek EI, Carey AN, McLaughlin JP. Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology 2010;210(2):199–209.PubMedCrossRefGoogle Scholar
  157. 157.
    Ciccocioppo R, Borruto AM, Domi A, Teshima K, Cannella N, Weiss F. NOP-Related Mechanisms in Substance Use Disorders. Handb Exp Pharmacol 2019;254:187–212.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270(5237):792–4.PubMedCrossRefGoogle Scholar
  159. 159.
    Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377(6549):532–5.PubMedCrossRefGoogle Scholar
  160. 160.
    Huang J, Young B, Pletcher MT, Heilig M, Wahlestedt C. Association between the nociceptin receptor gene (OPRL1) single nucleotide polymorphisms and alcohol dependence. Addict Biol 2008;13(1):88–94.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Zaveri NT. The nociceptin/orphanin FQ receptor (NOP) as a target for drug abuse medications. Curr Top Med Chem 2011;11(9):1151–6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, et al. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014;141(3):283–99.PubMedCrossRefGoogle Scholar
  163. 163.
    Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology. 2014;39(5):1081–92.PubMedCrossRefGoogle Scholar
  164. 164.
    Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K. A Novel and Selective Nociceptin Receptor (NOP) Agonist (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) Decreases Acquisition of Ethanol-Induced Conditioned Place Preference in Mice. Alcohol Clin Exp Res 2018;42(2):461–71.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Garcia-Arencibia M, Molina-Holgado E, Molina-Holgado F. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells. Br J Pharmacol 2019;176(10):1361–9.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Montecucco F, Di Marzo V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci 2012;33(6):331–40.PubMedCrossRefGoogle Scholar
  167. 167.
    Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron. 2017;93(6):1252–74.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Busquets-Garcia A, Bains J, Marsicano G. CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology. 2018;43(1):4–20.PubMedCrossRefGoogle Scholar
  169. 169.
    Manzanares J, Cabañero D, Puente N, García-Gutiérrez MS, Grandes P, Maldonado R. Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018;157:108–21.PubMedCrossRefGoogle Scholar
  170. 170.
    Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology. 2017;124:52–61.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 2015;16(10):579–94.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015;26:59–72.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2015;16(12):705–18.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia. 2010;58(9):1017–30.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, Le Foll B. The endocannabinoid system as a target for addiction treatment: Trials and tribulations. Neuropharmacology. 2017;124:73–83.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Schmidt LG, Samochowiec J, Finckh U, Fiszer-Piosik E, Horodnicki J, Wendel B, et al. Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. Drug Alcohol Depend 2002;65(3):221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Hutchison KE, Haughey H, Niculescu M, Schacht J, Kaiser A, Stitzel J, et al. The incentive salience of alcohol: translating the effects of genetic variant in CNR1. Arch Gen Psychiatry 2008;65(7):841–50.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    George DT, Herion DW, Jones CL, Phillips MJ, Hersh J, Hill D, et al. Rimonabant (SR141716) has no effect on alcohol self-administration or endocrine measures in nontreatment-seeking heavy alcohol drinkers. Psychopharmacology. 2010;208(1):37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Henderson-Redmond AN, Guindon J, Morgan DJ. Roles for the endocannabinoid system in ethanol-motivated behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 2016;65:330–9.CrossRefGoogle Scholar
  180. 180.
    Kleczkowska P, Smaga I, Filip M, Bujalska-Zadrozny M. Cannabinoid Ligands and Alcohol Addiction: A Promising Therapeutic Tool or a Humbug? Neurotox Res 2016;29(1):173–96.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Soyka M, Koller G, Schmidt P, Lesch O-M, Leweke M, Fehr C, et al. Cannabinoid receptor 1 blocker rimonabant (SR 141716) for treatment of alcohol dependence: results from a placebo-controlled, double-blind trial. J Clin Psychopharmacol 2008;28(3):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci 1999;96(10):5780–5.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Ledent C. Unresponsiveness to Cannabinoids and Reduced Addictive Effects of Opiates in CB1 Receptor Knockout Mice. Science. 1999;283(5400):401–4.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M. CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology. 2005;30(2):339–49.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Vinod KY, Yalamanchili R, Thanos PK, Vadasz C, Cooper TB, Volkow ND, et al. Genetic and pharmacological manipulations of the CB1 receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice. Synapse. 2008;62(8):574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci U S A 2003;100(3):1393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Vinod KY, Yalamanchili R, Thanos PK, Vadasz C, Cooper TB, Volkow ND, et al. Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice. Synapse. 2008;62(8):574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Ishiguro H, Iwasaki S, Teasenfitz L, Higuchi S, Horiuchi Y, Saito T, et al. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J 2007;7(6):380–5.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Onaivi ES, Ishiguro H, Gong J-P, Patel S, Meozzi PA, Myers L, et al. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 2008;3(2):e1640.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ortega-Alvaro A, Aracil-Fernández A, García-Gutiérrez MS, Navarrete F, Manzanares J. Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice. Neuropsychopharmacology. 2011;36(7):1489–504.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Sanchis-Segura C, Spanagel R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 2006;11(1):2–38.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Pradier B, Erxlebe E, Markert A, Rácz I. Interaction of cannabinoid receptor 2 and social environment modulates chronic alcohol consumption. Behav Brain Res 2015;287:163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Navarrete F, García-Gutiérrez MS, Manzanares J. Pharmacological regulation of cannabinoid CB2 receptor modulates the reinforcing and motivational actions of ethanol. Biochem Pharmacol 2018;157:227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Blednov YA, Cravatt BF, Boehm SL, Walker D, Harris RA. Role of endocannabinoids in alcohol consumption and intoxication: studies of mice lacking fatty acid amide hydrolase. Neuropsychopharmacology 2007;32(7):1570–82.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Basavarajappa BS, Yalamanchili R, Cravatt BF, Cooper TB, Hungund BL. Increased ethanol consumption and preference and decreased ethanol sensitivity in female FAAH knockout mice. Neuropharmacology. 2006;50(7):834–44.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Perelló M, Zigman JM. The Role of Ghrelin in Reward-Based Eating. Biol Psychiatry 2012;72(5):347–53.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab 2015;4(6):437–60.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2018.Google Scholar
  199. 199.
    Al Massadi O, López M, Tschöp M, Diéguez C, Nogueiras R. Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends Neurosci 2017.Google Scholar
  200. 200.
    Yanagi S, Sato T, Kangawa K, Nakazato M. The Homeostatic Force of Ghrelin. Cell Metab 2018;27(4):786–804.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Zizzari P, Hassouna R, Grouselle D, Epelbaum J, Tolle V. Physiological roles of preproghrelin-derived peptides in GH secretion and feeding. Peptides. 2011;32(11):2274–82.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Labarthe A, Fiquet O, Hassouna R, Zizzari P, Lanfumey L, Ramoz N, et al. Ghrelin-Derived Peptides: A Link between Appetite/Reward, GH Axis, and Psychiatric Disorders? Front Endocrinol 2014;5.Google Scholar
  203. 203.
    Ge X, Yang H, Bednarek MA, Galon-Tilleman H, Chen P, Chen M, et al. LEAP2 Is an Endogenous Antagonist of the Ghrelin Receptor. Cell Metab 2017.Google Scholar
  204. 204.
    M’Kadmi C, Cabral A, Barrile F, Giribaldi J, Cantel S, Damian M, et al. N-terminal Liver-expressed antimicrobial peptide 2 (LEAP2) region exhibits inverse agonist activity toward the ghrelin receptor. J Med Chem 2018.Google Scholar
  205. 205.
    Damian M, Marie J, Leyris J-P, Fehrentz J-A, Verdié P, Martinez J, et al. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 2012;287(6):3630–41.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    M’Kadmi C, Leyris J-P, Onfroy L, Galés C, Saulière A, Gagne D, et al. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling. J Biol Chem 2015;290(45):27021–39.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Damian M, Mary S, Maingot M, M’Kadmi C, Gagne D, Leyris JP, et al. Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proc Natl Acad Sci U S A 2015;112(5):1601–6.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Els S, Schild E, Petersen PS, Kilian T-M, Mokrosinski J, Frimurer TM, et al. An Aromatic Region To Induce a Switch between Agonism and Inverse Agonism at the Ghrelin Receptor. J Med Chem 2012;55(17):7437–49.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S, et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest 2006;116(3):760–8.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Guan X-M, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJS, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res 1997;48(1):23–9.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2019;196:1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Cabral A, López Soto E, Epelbaum J, Perelló M. Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci 2017;18(3):638.PubMedCentralCrossRefGoogle Scholar
  213. 213.
    Perello M, Cabral A, Cornejo MP, De Francesco PN, Fernandez G, Uriarte M. Brain accessibility delineates the central effects of circulating ghrelin. J Neuroendocrinol 2019;31(7):e12677.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Lee MR, Tapocik JD, Ghareeb M, Schwandt ML, Dias AA, Le AN, et al. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 2018.Google Scholar
  215. 215.
    Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav 2019;204:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018;172:39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Haass-Koffler CL, Long VM, Farokhnia M, Magill M, Kenna GA, Swift RM, et al. Intravenous administration of ghrelin increases serum cortisol and aldosterone concentrations in heavy-drinking alcohol-dependent individuals: Results from a double-blind, placebo-controlled human laboratory study. Neuropharmacology. 2019;158:107711.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Haass-Koffler CL, Giovenco DE, Lee MR, Zywiak WH, de la Monte SM, Kenna GA, et al. Serum Insulin Levels Are Reduced by Intravenous Ghrelin Administration but Do Not Correlate with Alcohol Craving in Alcohol-Dependent Individuals. Int J Neuropsychopharmacol. 2016.Google Scholar
  219. 219.
    Haass-Koffler CL, Aoun EG, Swift RM, de la Monte SM, Kenna GA, Leggio L. Leptin levels are reduced by intravenous ghrelin administration and correlated with cue-induced alcohol craving. Transl Psychiatry 2015;5:e646.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Suchankova P, Nilsson S, von der Pahlen B, Santtila P, Sandnabba K, Johansson A, et al. Genetic variation of the growth hormone secretagogue receptor gene is associated with alcohol use disorders identification test scores and smoking. Addict Biol 2016;21(2):481–8.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Suchankova P, Yan J, Schwandt ML, Stangl BL, Jerlhag E, Engel JA, et al. The Leu72Met Polymorphism of the Prepro-ghrelin Gene is Associated With Alcohol Consumption and Subjective Responses to Alcohol: Preliminary Findings. Alcohol Alcohol 2017;52(4):425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Landgren S, Jerlhag E, Zetterberg H, Gonzalez-Quintela A, Campos J, Olofsson U, et al. Association of pro-ghrelin and GHS-R1A gene polymorphisms and haplotypes with heavy alcohol use and body mass. Alcohol Clin Exp Res 2008;32(12):2054–61.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. Int Rev Neurobiol. 136: Elsevier; 2017. p. 89–119.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Zallar LJ, Beurmann S, Tunstall BJ, Fraser CM, Koob GF, Vendruscolo LF, et al. Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol 2019;31(7):e12663.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, et al. Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 2008;32(10):1816–23.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D. GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci U S A 2008;105(23):8114–9.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Neasta J, Ben Hamida S, Yowell Q, Carnicella S, Ron D. Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc Natl Acad Sci U S A 2010;107(46):20093–8.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Jeanblanc J, Rolland B, Gierski F, Martinetti MP, Naassila M. Animal models of binge drinking, current challenges to improve face validity. Neurosci Biobehav Rev 2018:S0149763418301234.Google Scholar
  229. 229.
    Al Massadi O, Nogueiras R, Dieguez C, Girault J-A. Ghrelin and food reward. Neuropharmacology. 2019;148:131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Bhattacharya SK, Andrews K, Beveridge R, Cameron KO, Chen C, Dunn M, et al. Discovery of PF-5190457, a Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate. ACS Med Chem Lett 2014;5(5):474–9.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Hasegawa Y, Higuchi S, Matsushita S, Miyaoka H. Association of a polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J Neural Transm (Vienna) 2002;109(4):513–21.CrossRefGoogle Scholar
  232. 232.
    Cao JX, Hu J, Ye XM, Xia Y, Haile CA, Kosten TR, et al. Association between the 5-HTR1B gene polymorphisms and alcohol dependence in a Han Chinese population. Brain Res 2011;1376:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Zuo L, Zhang XY, Wang F, Li CS, Lu L, Ye L, et al. Genome-wide significant association signals in IPO11-HTR1A region specific for alcohol and nicotine codependence. Alcohol Clin Exp Res 2013;37(5):730–9.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Cao J, Liu X, Han S, Zhang CK, Liu Z, Li D. Association of the HTR2A gene with alcohol and heroin abuse. Hum Genet 2014;133(3):357–65.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Risinger FO, Doan AM, Vickrey AC. Oral operant ethanol self-administration in 5-HT1b knockout mice. Behav Brain Res 1999;102(1–2):211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science. 1999;284(5420):1670–2.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2004;103(2):121–46.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016;3(8):760–73.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol 2009;20(1):1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Parkitna JR, Sikora M, Golda S, Golembiowska K, Bystrowska B, Engblom D, et al. Novelty-seeking behaviors and the escalation of alcohol drinking after abstinence in mice are controlled by metabotropic glutamate receptor 5 on neurons expressing dopamine d1 receptors. Biol Psychiatry 2013;73(3):263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Harrison SJ, Nobrega JN. Differential susceptibility to ethanol and amphetamine sensitization in dopamine D3 receptor-deficient mice. Psychopharmacology 2009;204(1):49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Carnicella S, Drui G, Boulet S, Carcenac C, Favier M, Duran T, et al. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl Psychiatry 2014;4:e401.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci 2016;36(3):701–13.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Elliot EE, Sibley DR, Katz JL. Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 2003;169(2):161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Newman TK, Parker CC, Suomi SJ, Goldman D, Barr CS, Higley JD. DRD1 5′UTR variation, sex and early infant stress influence ethanol consumption in rhesus macaques. Genes Brain Behav 2009;8(6):626–30.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Cunningham CL, Howard MA, Gill SJ, Rubinstein M, Low MJ, Grandy DK. Ethanol-conditioned place preference is reduced in dopamine D2 receptor-deficient mice. Pharmacol Biochem Behav 2000;67(4):693–9.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Gallo EF, Salling MC, Feng B, Moron JA, Harrison NL, Javitch JA, et al. Upregulation of dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology. 2015;40(7):1609–18.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell. 1997;90(6):991–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Dick DM, Wang JC, Plunkett J, Aliev F, Hinrichs A, Bertelsen S, et al. Family-based association analyses of alcohol dependence phenotypes across DRD2 and neighboring gene ANKK1. Alcohol Clin Exp Res 2007;31(10):1645–53.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Franke P, Nothen MM, Wang T, Knapp M, Lichtermann D, Neidt H, et al. DRD4 exon III VNTR polymorphism-susceptibility factor for heroin dependence? Results of a case-control and a family-based association approach. Mol Psychiatry 2000;5(1):101–4.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Moyer RA, Wang D, Papp AC, Smith RM, Duque L, Mash DC, et al. Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011;36(4):753–62.PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Berggren U, Fahlke C, Aronsson E, Karanti A, Eriksson M, Blennow K, et al. The taqI DRD2 A1 allele is associated with alcohol-dependence although its effect size is small. Alcohol Alcohol 2006;41(5):479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Sasabe T, Furukawa A, Matsusita S, Higuchi S, Ishiura S. Association analysis of the dopamine receptor D2 (DRD2) SNP rs1076560 in alcoholic patients. Neurosci Lett 2007;412(2):139–42.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Bulwa ZB, Sharlin JA, Clark PJ, Bhattacharya TK, Kilby CN, Wang Y, et al. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol. 2011;45(7):631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    McGeary J. The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: a review. Pharmacol Biochem Behav 2009;93(3):222–9.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Larsen H, van der Zwaluw CS, Overbeek G, Granic I, Franke B, Engels RC. A variable-number-of-tandem-repeats polymorphism in the dopamine D4 receptor gene affects social adaptation of alcohol use: investigation of a gene-environment interaction. Psychol Sci 2010;21(8):1064–8.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010;50:295–322.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Haass-Koffler CL, Goodyear K, Loche A, Long VM, Lobina C, Tran HH, et al. Administration of the metabotropic glutamate receptor subtype 5 allosteric modulator GET 73 with alcohol: A translational study in rats and humans. J Psychopharmacol 2018;32(2):163–73.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Haass-Koffler CL, Goodyear K, Long VM, Tran HH, Loche A, Cacciaglia R, et al. A Phase I randomized clinical trial testing the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy volunteers. Eur J Pharm Sci 2017;109:78–85.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Cleva RM, Olive MF. mGlu receptors and drug addiction. Wiley Interdiscip Rev Membr Transp Signal 2012;1(3):281–95.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018;9(9):2188–204.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Domart MC, Benyamina A, Lemoine A, Bourgain C, Blecha L, Debuire B, et al. Association between a polymorphism in the promoter of a glutamate receptor subunit gene (GRIN2A) and alcoholism. Addict Biol 2012;17(4):783–5.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, et al. Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry 2008;65(7):826–38.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Meyers JL, Salling MC, Almli LM, Ratanatharathorn A, Uddin M, Galea S, et al. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl Psychiatry 2015;5:e586.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Lovinger DM, Kash TL. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis. Alcohol Res 2015;37(1):109–24.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Erb S, Shaham Y, Stewart J. Stress-induced relapse to drug seeking in the rat: role of the bed nucleus of the stria terminalis and amygdala. Stress. 2001;4(4):289–303.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Heaney CF, Kinney JW. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016;63:1–28.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Kumar K, Sharma S, Kumar P, Deshmukh R. Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 2013;110:174–84.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward. Biol Psychiatry 2018;83(11):963–76.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Agabio R, Maccioni P, Carai MA, Gessa GL, Froestl W, Colombo G. The development of medications for alcohol-use disorders targeting the GABAB receptor system. Recent Pat CNS Drug Discov 2012;7(2):113–28.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Kasten CR, Boehm SL, 2nd. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015;57:70–87.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Pin JP, Kniazeff J, Binet V, Liu J, Maurel D, Galvez T, et al. Activation mechanism of the heterodimeric GABA(B) receptor. Biochem Pharmacol 2004;68(8):1565–72.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Pinard A, Seddik R, Bettler B. GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 2010;58:231–55.PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014;5:12.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron. 2006;50(4):589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Phillips TJ, Reed C. Targeting GABAB receptors for anti-abuse drug discovery. Expert Opin Drug Discovery 2014;9(11):1307–17.CrossRefGoogle Scholar
  277. 277.
    Augier E, Dulman RS, Damadzic R, Pilling A, Hamilton JP, Heilig M. The GABAB Positive Allosteric Modulator ADX71441 Attenuates Alcohol Self-Administration and Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology. 2017;42(9):1789–99.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Vengeliene V, Takahashi TT, Dravolina OA, Belozertseva I, Zvartau E, Bespalov AY, et al. Efficacy and side effects of baclofen and the novel GABAB receptor positive allosteric modulator CMPPE in animal models for alcohol and cocaine addiction. Psychopharmacology 2018;235(7):1955–65.PubMedCrossRefGoogle Scholar
  279. 279.
    Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014;75(10):765–73.PubMedCrossRefGoogle Scholar
  280. 280.
    Ribeiro AF, Correia D, Torres AA, Boas GR, Rueda AV, Camarini R, et al. A transcriptional study in mice with different ethanol-drinking profiles: possible involvement of the GABA(B) receptor. Pharmacol Biochem Behav 2012;102(2):224–32.PubMedCrossRefGoogle Scholar
  281. 281.
    Jacobson LH, Sweeney FF, Kaupmann K, O’Leary OF, Gassmann M, Bettler B, et al. Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine. Behav Brain Res. 2016;298(Pt B):12–6.PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Caputo F, Ciminelli BM, Jodice C, Blasi P, Vignoli T, Cibin M, et al. Alcohol use disorder and GABAB receptor gene polymorphisms in an Italian sample: haplotype frequencies, linkage disequilibrium and association studies. Ann Hum Biol 2017;44(4):384–8.PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Terranova C, Tucci M, Di Pietra L, Ferrara SD. GABA Receptors Genes Polymorphisms and Alcohol Dependence: No Evidence of an Association in an Italian Male Population. Clin Psychopharmacol Neurosci 2014;12(2):142–8.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Lorrai I, Maccioni P, Gessa GL, Colombo G. R(+)-Baclofen, but Not S(-)-Baclofen, Alters Alcohol Self-Administration in Alcohol-Preferring Rats. Front Psychiatry. 2016;7:68.PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Kasten CR, Blasingame SN, Boehm SL, 2nd. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption. Alcohol. 2015;49(1):37–46.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Kasten CR, Boehm SL, 2nd. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice. Behav Brain Res 2014;272:238–47.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Loi B, Maccioni P, Lobina C, Carai MA, Gessa GL, Thomas AW, et al. Reduction of alcohol intake by the positive allosteric modulator of the GABA(B) receptor, rac-BHFF, in alcohol-preferring rats. Alcohol. 2013;47(1):69–73.PubMedCrossRefGoogle Scholar
  288. 288.
    Maccioni P, Fara F, Lorrai I, Acciaro C, Mugnaini C, Corelli F, et al. Suppressing effect of CMPPE, a new positive allosteric modulator of the GABAB receptor, on alcohol self-administration and reinstatement of alcohol seeking in rats. Alcohol. 2019;75:79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Maccioni P, Lorrai I, Contini A, Leite-Morris K, Colombo G. Microinjection of baclofen and CGP7930 into the ventral tegmental area suppresses alcohol self-administration in alcohol-preferring rats. Neuropharmacology. 2018;136(Pt A):146–58.PubMedCrossRefGoogle Scholar
  290. 290.
    Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525–57.PubMedCrossRefGoogle Scholar
  291. 291.
    Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 2006;5(4):453–v79.PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Justice NJ, Yuan ZF, Sawchenko PE, Vale W. Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central corticotropin-releasing factor system. J Comp Neurol 2008;511(4):479–96.PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Korosi A, Veening JG, Kozicz T, Henckens M, Dederen J, Groenink L, et al. Distribution and expression of CRF receptor 1 and 2 mRNAs in the CRF over-expressing mouse brain. Brain Res 2006;1072(1):46–54.PubMedCrossRefGoogle Scholar
  294. 294.
    Kuhne C, Puk O, Graw J, Hrabe de Angelis M, Schutz G, Wurst W, et al. Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele. J Comp Neurol 2012;520(14):3150–80.PubMedCrossRefGoogle Scholar
  295. 295.
    Lemos JC, Wanat MJ, Smith JS, Reyes BA, Hollon NG, Van Bockstaele EJ, et al. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature. 2012;490(7420):402–6.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000;428(2):191–212.PubMedCrossRefPubMedCentralGoogle Scholar
  297. 297.
    Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 2001;98(5):2843–8.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Ryabinin AE, Tsoory MM, Kozicz T, Thiele TE, Neufeld-Cohen A, Chen A, et al. Urocortins: CRF’s siblings and their potential role in anxiety, depression and alcohol drinking behavior. Alcohol. 2012;46(4):349–57.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. Genes Brain Behav 2015;14(1):98–135.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Henckens MJ, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016;17(10):636–51.PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci 2007;30(8):399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Zorrilla EP, Heilig M, de Wit H, Shaham Y. Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism. Drug Alcohol Depend 2013;128(3):175–86.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Schreiber AL, Gilpin NW. Corticotropin-Releasing Factor (CRF) Neurocircuitry and Neuropharmacology in Alcohol Drinking. Handb Exp Pharmacol 2018;248:435–71.PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010;1314:15–28.PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol Psychiatry 2008;63(2):146–51.PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Ray LA. Stress-induced and cue-induced craving for alcohol in heavy drinkers: Preliminary evidence of genetic moderation by the OPRM1 and CRH-BP genes. Alcohol Clin Exp Res 2011;35(1):166–74.PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Ribbe K, Ackermann V, Schwitulla J, Begemann M, Papiol S, Grube S, et al. Prediction of the risk of comorbid alcoholism in schizophrenia by interaction of common genetic variants in the corticotropin-releasing factor system. Arch Gen Psychiatry 2011;68(12):1247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Treutlein J, Kissling C, Frank J, Wiemann S, Dong L, Depner M, et al. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol Psychiatry 2006;11(6):594–602.PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Olive MF, Mehmert KK, Koenig HN, Camarini R, Kim JA, Nannini MA, et al. A role for corticotropin releasing factor (CRF) in ethanol consumption, sensitivity, and reward as revealed by CRF-deficient mice. Psychopharmacology 2003;165(2):181–7.PubMedCrossRefPubMedCentralGoogle Scholar
  310. 310.
    Palmer AA, Sharpe AL, Burkhart-Kasch S, McKinnon CS, Coste SC, Stenzel-Poore MP, et al. Corticotropin-releasing factor overexpression decreases ethanol drinking and increases sensitivity to the sedative effects of ethanol. Psychopharmacology 2004;176(3–4):386–97.PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Pastor R, McKinnon CS, Scibelli AC, Burkhart-Kasch S, Reed C, Ryabinin AE, et al. Corticotropin-releasing factor-1 receptor involvement in behavioral neuroadaptation to ethanol: a urocortin1-independent mechanism. Proc Natl Acad Sci U S A 2008;105(26):9070–5.PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Giardino WJ, Cocking DL, Kaur S, Cunningham CL, Ryabinin AE. Urocortin-1 within the centrally-projecting Edinger-Westphal nucleus is critical for ethanol preference. PLoS One 2011;6(10):e26997.PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005;8(5):571–8.PubMedCrossRefPubMedCentralGoogle Scholar
  314. 314.
    Ellacott KL, Cone RD. The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond Ser B Biol Sci 2006;361(1471):1265–74.CrossRefGoogle Scholar
  315. 315.
    Hadley ME, Haskell-Luevano C. The proopiomelanocortin system. Ann N Y Acad Sci 1999;885:1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015;72(7):1331–45.PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Buckley DI, Ramachandran J. Characterization of corticotropin receptors on adrenocortical cells. Proc Natl Acad Sci U S A 1981;78(12):7431–5.PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Mountjoy KG. Distribution and function of melanocortin receptors within the brain. Adv Exp Med Biol 2010;681:29–48.PubMedCrossRefPubMedCentralGoogle Scholar
  319. 319.
    Koch M, Horvath TL. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism. Mol Psychiatry 2014;19(7):752–61.PubMedCrossRefPubMedCentralGoogle Scholar
  320. 320.
    Kokare DM, Singru PS, Dandekar MP, Chopde CT, Subhedar NK. Involvement of alpha-melanocyte stimulating hormone (alpha-MSH) in differential ethanol exposure and withdrawal related depression in rat: neuroanatomical-behavioral correlates. Brain Res 2008;1216:53–67.PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Navarro M, Cubero I, Knapp DJ, Breese GR, Thiele TE. Decreased immunoreactivity of the melanocortin neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) after chronic ethanol exposure in Sprague-Dawley rats. Alcohol Clin Exp Res 2008;32(2):266–76.PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Navarro M, Cubero I, Thiele TE. Decreased immunoreactivity of the polypeptide precursor pro-opiomelanocortin (POMC) and the prohormone convertase pc1/3 after chronic ethanol exposure in Sprague-Dawley rats. Alcohol Clin Exp Res 2013;37(3):399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Lindblom J, Wikberg JE, Bergstrom L. Alcohol-preferring AA rats show a derangement in their central melanocortin signalling system. Pharmacol Biochem Behav 2002;72(1–2):491–6.PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. Int Rev Neurobiol. 136: Elsevier; 2017. p. 121–50.PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Gerlai R. Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav Brain Res 2001;125(1–2):13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  326. 326.
    Navarro M, Carvajal F, Lerma-Cabrera JM, Cubero I, Picker MJ, Thiele TE. Evidence that Melanocortin Receptor Agonist Melanotan-II Synergistically Augments the Ability of Naltrexone to Blunt Binge-Like Ethanol Intake in Male C57BL/6J Mice. Alcohol Clin Exp Res 2015;39(8):1425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Ercil NE, Galici R, Kesterson RA. HS014, a selective melanocortin-4 (MC4) receptor antagonist, modulates the behavioral effects of morphine in mice. Psychopharmacology 2005;180(2):279–85.PubMedCrossRefPubMedCentralGoogle Scholar
  328. 328.
    Civelli O. Orphan GPCRs and neuromodulation. Neuron. 2012;76(1):12–21.PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Kononoff J, Kallupi M, Kimbrough A, Conlisk D, de Guglielmo G, George O. Systemic and Intra-Habenular Activation of the Orphan G Protein-Coupled Receptor GPR139 Decreases Compulsive-Like Alcohol Drinking and Hyperalgesia in Alcohol-Dependent Rats. eNeuro. 2018;5(3).PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Zhang LL, Wang JJ, Liu Y, Lu XB, Kuang Y, Wan YH, et al. GPR26-deficient mice display increased anxiety- and depression-like behaviors accompanied by reduced phosphorylated cyclic AMP responsive element-binding protein level in central amygdala. Neuroscience. 2011;196:203–14.PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Mizushima K, Miyamoto Y, Tsukahara F, Hirai M, Sakaki Y, Ito T. A novel G-protein-coupled receptor gene expressed in striatum. Genomics. 2000;69(3):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  332. 332.
    Van Waes V, Tseng KY, Steiner H. GPR88—a putative signaling molecule predominantly expressed in the striatum: Cellular localization and developmental regulation. Basal Ganglia 2011;1(2):83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JA, Kieffer BL, et al. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 2016;524(14):2776–802.PubMedCrossRefPubMedCentralGoogle Scholar
  334. 334.
    Ghate A, Befort K, Becker JA, Filliol D, Bole-Feysot C, Demebele D, et al. Identification of novel striatal genes by expression profiling in adult mouse brain. Neuroscience. 2007;146(3):1182–92.PubMedCrossRefPubMedCentralGoogle Scholar
  335. 335.
    Becker JA, Befort K, Blad C, Filliol D, Ghate A, Dembele D, et al. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience. 2008;156(4):950–65.PubMedPubMedCentralCrossRefGoogle Scholar
  336. 336.
    Massart R, Guilloux JP, Mignon V, Sokoloff P, Diaz J. Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur J Neurosci 2009;30(3):397–414.PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, et al. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012;17(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Quintana A, Sanz E, Wang W, Storey GP, Guler AD, Wanat MJ, et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 2012;15(11):1547–55.PubMedPubMedCentralCrossRefGoogle Scholar
  339. 339.
    Lovinger DM. New twist on orphan receptor GPR88 function. Nat Neurosci 2012;15(11):1469–70.PubMedPubMedCentralCrossRefGoogle Scholar
  340. 340.
    Meirsman AC, Le Merrer J, Pellissier LP, Diaz J, Clesse D, Kieffer BL, et al. Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist. Biol Psychiatry 2016;79(11):917–27.PubMedCrossRefPubMedCentralGoogle Scholar
  341. 341.
    Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 2014;8:76.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 2018;17(4):243–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2020

Authors and Affiliations

  1. 1.Laboratoire de Pharmacologie, Faculté de PharmacieUniversity of MontpellierMontpellierFrance
  2. 2.Douglas Hospital Research Center, Department of PsychiatryMcGill UniversityMontrealCanada
  3. 3.Research Group on Alcohol and Pharmacodependences-INSERM U1247University of Picardie Jules VerneAmiensFrance
  4. 4.INSERM U1216, Grenoble Institut des Neurosciences (GIN)University of Grenoble AlpesGrenobleFrance

Personalised recommendations