Gender-Specific Beneficial Effects of Docosahexaenoic Acid Dietary Supplementation in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice

  • Pascual Torres
  • Daniel Cacabelos
  • Jèssica Pairada
  • Kylynda C Bauer
  • Jordi Boada
  • Laia Fontdevila
  • Chiara Rossi
  • Monica Povedano
  • Isidre Ferrer
  • Reinald Pamplona
  • B. Brett Finlay
  • Manuel Portero-OtínEmail author
  • Victòria AyalaEmail author
Original Article


Docosahexaenoic acid (DHA) is an essential fatty acid modulating key nervous system functions, including neuroinflammation, and regulation of pre- and postsynaptic membrane formation. DHA concentration decreases in the lumbar spinal cord (LSC) of amyotrophic lateral sclerosis (ALS) patients and murine preclinical models. Using a dietary supplementation, we increased DHA levels (2% mean increase, p < 0.01) in the LSC of the familial ALS murine model B6SJL-Tg(SOD1*G93A)1Gur/J. This DHA-enriched diet significantly increases male mouse survival by 7% (average 10 days over 130 days of life expectancy), and delays motor dysfunction (based on stride length) and transgene-associated weight loss (p < 0.01). DHA supplementation led to an increased anti-inflammatory fatty acid profile (ca 30%, p < 0.01) and a lower concentration of circulating proinflammatory cytokine TNF-α (p < 0.001 in males). Furthermore, although DHA-treated mice did not exhibit generally decreased protein oxidative markers (glutamic and aminoadipic semialdehydes, carboxyethyllysine, carboxymethyllysine, and malondialdehydelysine), dietary intake of DHA reduced immunoreactivity towards DNA oxidative damage markers (8-oxo-dG) in the LSC. In vitro we demonstrate that DHA and α-tocopherol addition to a model of motor neuron demise (neonatal rat organotypic spinal cord model under chronic excitotoxicity) also preserves motor neuron number, in comparison with untreated spinal cords. Also, beneficial effects on cell viability were evidenced for the motor neuron cell line NSC-34 in front of H2O2 insult (p < 0.001). Globally we show a sex-specific benefit of dietary DHA supplementation in the G93A ALS mouse model, compared with mice fed an isocaloric control or a n-3-depleted diet. These changes were associated with an increased DHA concentration in the LSC and were compatible with in vitro results showing DHA neuroprotective properties. These results suggest the need for further study on the interaction of gender-influenced biological parameters and DHA in ALS pathogenesis.

Key Words

Polyunsaturated fatty acids  protein oxidative modification neuroinflammation  estrogens  n-3 fatty acids 



We thank D. Argilés and M. Martí for their skillful assistance. Grants were received from the Instituto de Salud Carlos III (PI 17-000134) to MPO and from the Generalitat de Catalunya 2017SGR696 to RP. PT is a predoctoral fellow from the Ministerio de Educacion (FPU16/01446). Support was also received in the form of a FUNDELA Grant, RedELA-Plataforma Investigación and the Fundació Miquel Valls (Jack Van den Hoek donation). FEDER funds are acknowledged (“A way to make Europe”).

Compliance with Ethical Standards

All experimental procedures were approved by the Institutional Animal Care Committee of the University of Lleida, according to local laws and to the Directive 2010/63/EU of the European Parliament

Supplementary material

13311_2019_808_MOESM1_ESM.pdf (498 kb)
ESM 1 (PDF 498 kb)


  1. 1.
    Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 2004;27:723–749.CrossRefGoogle Scholar
  2. 2.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.CrossRefGoogle Scholar
  3. 3.
    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–1775.CrossRefGoogle Scholar
  4. 4.
    Blasco H, Guennoc AM, Veyrat-Durebex C. Amyotrophic lateral sclerosis: a hormonal condition? Amyotrophic Lateral Sclerosis 2012;13:585–588.CrossRefGoogle Scholar
  5. 5.
    Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta. 2015;1852:679–684.Google Scholar
  6. 6.
    Singh M. Essential fatty acids, DHA and human brain. Indian J Pediatr. 2005;72:239–242.CrossRefGoogle Scholar
  7. 7.
    Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008;8:349–361.CrossRefGoogle Scholar
  8. 8.
    Jackson PA, Reay JL, Scholey AB, Kennedy DO. DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: a near IR spectroscopy pilot study. Br. J. Nutr. 2012;107:1093–1098.CrossRefGoogle Scholar
  9. 9.
    Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 2010;1341:32–40.CrossRefGoogle Scholar
  10. 10.
    Guesnet P, Alessandri J-M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations. Biochimie. 2011;93:7–12.CrossRefGoogle Scholar
  11. 11.
    Lee LK, Shahar S, Chin A-V, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology. 2013;225:605–612.CrossRefGoogle Scholar
  12. 12.
    Ilieva EV, Ayala V, Jové M, Dalfó E, Cacabelos D, Povedano M, et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain. 2007;130:3111–3123.CrossRefGoogle Scholar
  13. 13.
    Hernando S, Requejo C, Herran E, Ruiz-Ortega JA, Morera-Herreras T, Lafuente JV, et al. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: The role of glia and NRf2 regulation. Neurobiol. Dis. 2019;121:252–262.CrossRefGoogle Scholar
  14. 14.
    Srikanth M, Chandrasaharan K, Zhao X, Chayaburakul K, Ong W-Y, Herr DR. Metabolism of Docosahexaenoic Acid (DHA) Induces Pyroptosis in BV-2 Microglial Cells. Neuromolecul. Med. 2018;20:504–514.CrossRefGoogle Scholar
  15. 15.
    Zhou M-M, Ding L, Wen M, Che H-X, Huang J-Q, Zhang T-T, et al. Mechanisms of DHA-enriched phospholipids in improving cognitive deficits in aged SAMP8 mice with high-fat diet. J. Nutr. Biochem. 2018;59:64–75.CrossRefGoogle Scholar
  16. 16.
    Ajith TA. A Recent Update on the Effects of Omega-3 Fatty Acids in Alzheimer’s Disease. Curr Clin Pharmacol. 2018;13:252–260.CrossRefGoogle Scholar
  17. 17.
    Silva RV, Oliveira JT, Santos BLR, Dias FC, Martinez AMB, Lima CKF, et al. Long-Chain Omega-3 Fatty Acids Supplementation Accelerates Nerve Regeneration and Prevents Neuropathic Pain Behavior in Mice. Front. Pharmacol. 2017;8:723.CrossRefGoogle Scholar
  18. 18.
    Cacabelos D, Ayala V, Ramírez-Nunez O, Granado-Serrano AB, Boada J, Serrano JCE, et al. Dietary lipid unsaturation influences survival and oxidative modifications of an amyotrophic lateral sclerosis model in a gender-specific manner. Neuromolecul. Med. 2014;16:669–685.CrossRefGoogle Scholar
  19. 19.
    Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43:633–645.CrossRefGoogle Scholar
  20. 20.
    Muntané G, Janué A, Fernandez N, Odena MA, Oliveira E, Boluda S, et al. Modification of brain lipids but not phenotype in alpha-synucleinopathy transgenic mice by long-term dietary n-3 fatty acids. Neurochem. Int. 2010;56:318–328.CrossRefGoogle Scholar
  21. 21.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254.CrossRefGoogle Scholar
  22. 22.
    Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, et al. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 2005;280:21522–21530.CrossRefGoogle Scholar
  23. 23.
    Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006;83:1505S–1519S.CrossRefGoogle Scholar
  24. 24.
    Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA. 1993;90:6591–6595.CrossRefGoogle Scholar
  25. 25.
    Rasband WS. US National Institutes of Health, Bethesda, Maryland, USA. 2011;
  26. 26.
    Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA, Front. Aging Neurosci. 2015;7:52.CrossRefGoogle Scholar
  27. 27.
    Aguirre N, Beal MF, Matson WR, Bogdanov MB. Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic. Res. 2005;39:383–388.CrossRefGoogle Scholar
  28. 28.
    Farg MA, Konopka A, Soo KY, Ito D, Atkin JD. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2017;26:2882–2896.CrossRefGoogle Scholar
  29. 29.
    Keller AF, Gravel M, Kriz J. Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia. 2009;57:1130–1142.CrossRefGoogle Scholar
  30. 30.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 1998;57:1–9.CrossRefGoogle Scholar
  31. 31.
    Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015;18:1081–1083.CrossRefGoogle Scholar
  32. 32.
    Kitson AP, Stroud CK, Stark KD. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids. 2010;45:209–224.CrossRefGoogle Scholar
  33. 33.
    Paterniti I, Impellizzeri D, Di Paola R, Esposito E, Gladman S, Yip P, et al. Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies. J. Neuroinflammation. 2014;11:6.CrossRefGoogle Scholar
  34. 34.
    Yip PK, Pizzasegola C, Gladman S, Biggio ML, Marino M, Jayasinghe M, et al. The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PLoS One. 2013;8:e61626.CrossRefGoogle Scholar
  35. 35.
    de Lima IV A, Bastos LFS, Limborço-Filho M, Fiebich BL, de Oliveira ACP. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm. 2012;2012:946813.CrossRefGoogle Scholar
  36. 36.
    Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, et al. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim. Biophys. Acta. 2010;1797:1555–1562.Google Scholar
  37. 37.
    Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron. 2014;81:1009–1023.CrossRefGoogle Scholar
  38. 38.
    Iłzecka J. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol. Scand. 2003;108:125–129.CrossRefGoogle Scholar
  39. 39.
    Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N. Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr. Top. Med. Chem. 2011;11:629–647.CrossRefGoogle Scholar
  40. 40.
    Jaudszus A, Gruen M, Watzl B, Ness C, Roth A, Lochner A, et al. Evaluation of suppressive and pro-resolving effects of EPA and DHA in human primary monocytes and T-helper cells. J. Lipid Res. 2013;54:923–935.CrossRefGoogle Scholar
  41. 41.
    Fitzgerald KC, O’Reilly ÉJ, Falcone GJ, McCullough ML, Park Y, Kolonel LN, et al. Dietary ω-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol. 2014;71:1102–1110.CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  • Pascual Torres
    • 1
  • Daniel Cacabelos
    • 1
  • Jèssica Pairada
    • 1
  • Kylynda C Bauer
    • 2
    • 3
  • Jordi Boada
    • 1
  • Laia Fontdevila
    • 1
  • Chiara Rossi
    • 1
  • Monica Povedano
    • 4
  • Isidre Ferrer
    • 5
    • 6
  • Reinald Pamplona
    • 1
  • B. Brett Finlay
    • 2
    • 3
    • 7
  • Manuel Portero-Otín
    • 1
    Email author
  • Victòria Ayala
    • 1
    Email author
  1. 1.Departament de Medicina ExperimentalInstitut de Recerca Biomèdica de Lleida-Universitat de LleidaLleidaSpain
  2. 2.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
  3. 3.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  4. 4.Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of NeurologyBellvitge University HospitalHospitalet de LlobregatSpain
  5. 5.Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaHospitalet de LlobregatSpain
  6. 6.Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED)Institute Carlos IIIHospitalet de LlobregatSpain
  7. 7.Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations