Advertisement

Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington’s Disease: Insights from In Vitro and In Vivo Models

  • Jordi Creus-Muncunill
  • Michelle E. EhrlichEmail author
Review

Abstract

Huntington’s disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell–cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.

Key Words

Cell-autonomous non-cell-autonomous glia medium spiny neurons corticostriatal 

Notes

Acknowledgments

This work was supported by R01NS100529. Thank you to John Carroll for graphics in Figure 1.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2019_782_MOESM1_ESM.pdf (431 kb)
ESM 1 (PDF 431 kb)

References

  1. 1.
    Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011;10:83–98.CrossRefPubMedGoogle Scholar
  2. 2.
    HDCRG. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971–983.CrossRefGoogle Scholar
  3. 3.
    Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 1993;4:387–392.CrossRefPubMedGoogle Scholar
  4. 4.
    Marques Sousa C, Humbert S. Huntingtin: here, there, everywhere! J Huntingtons Dis 2013;2:395–403.PubMedGoogle Scholar
  5. 5.
    Kassubek J, Bernhard Landwehrmeyer G, Ecker D, et al. Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport 2004;15:363–365.CrossRefPubMedGoogle Scholar
  6. 6.
    Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998;57:369–384.CrossRefPubMedGoogle Scholar
  7. 7.
    Rosas HD, Koroshetz WJ, Chen YI, et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 2003;60:1615–1620.CrossRefPubMedGoogle Scholar
  8. 8.
    Ehrlich ME. Huntington’s disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 2012;9:270–284.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Harding RJ, Tong Y-F. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39:754–769.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ortega Z, Lucas JJ. Ubiquitin-proteasome system involvement in Huntington’s disease. Front Mol Neurosci 2014;7:77.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 2004;20:146–154.CrossRefPubMedGoogle Scholar
  12. 12.
    Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010;5.Google Scholar
  13. 13.
    Takahashi T, Kikuchi S, Katada S, et al. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2008;17:345–356.CrossRefPubMedGoogle Scholar
  14. 14.
    Sengupta U, Nilson AN, Kayed R. The role of amyloid-beta oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016;6:42–49.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Van Roon-Mom WMC, Reid SJ, Jones AL, et al. Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Mol Brain Res 2002;109:1–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation. Mol Cell 2004;15:95–105.CrossRefPubMedGoogle Scholar
  17. 17.
    Suhr ST, Senut MC, Whitelegge JP, et al. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 2001;153:283–294.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci 2002;97:6763–6768.CrossRefGoogle Scholar
  19. 19.
    Oliveira JMA. Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr 2010;42:227–234.CrossRefPubMedGoogle Scholar
  20. 20.
    Alberch J, Perez-Navarro E, Canals JM. Neurotrophic factors in Huntington’s disease. Prog Brain Res 2004;146:195–229.PubMedGoogle Scholar
  21. 21.
    Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 2007;81:294–330.CrossRefPubMedGoogle Scholar
  22. 22.
    Raymond LA. Excitotoxicity in Huntington disease. Clin Neurosci Res 2003;3:121–128.CrossRefGoogle Scholar
  23. 23.
    Cepeda C, Murphy KPS, Parent M, et al. The role of dopamine in Huntington’s disease. Prog Brain Res 2014;211:235–254.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD Gene with an Expanded. 1996;87:493–506.Google Scholar
  25. 25.
    Francelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease. Front Cell Neurosci 2014;8:1–13.CrossRefGoogle Scholar
  26. 26.
    Cummings DM, Andre VM, Uzgil BO, et al. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington’s disease. J Neurosci 2009;29:10371–10386.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Slow EJ, van Raamsdonk J, Rogers D, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003;12:1555–1567.CrossRefPubMedGoogle Scholar
  28. 28.
    Teo RTY, Hong X, Yu-Taeger L, et al. Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Hum Mol Genet 2016;25:2621–2632.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Simmons DA, Belichenko NP, Yang T, et al. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J Neurosci 2013;33:18712–18727.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Labadorf A, Hoss AG, Lagomarsino V, et al. RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 2015;10:e0143563.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Damiano M, Diguet E, Malgorn C, et al. A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 2013;22:3869–3882.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gray M, Shirasaki DI, Cepeda C, et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 2008;28:6182–6195.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Virlogeux A, Moutaux E, Christaller W, et al. Reconstituting corticostriatal network on-a-chip reveals the contribution of the presynaptic compartment to Huntington’s disease. Cell Rep 2018;22:110–122.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu Z-X, Li S-H, Evans J, et al. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J Neurosci 2003;23:2193–2202.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gu X, Li C, Wei W, et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005;46:433–444.CrossRefPubMedGoogle Scholar
  36. 36.
    Brown TB, Bogush AI, Ehrlich ME. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet 2008;17:3095–3104.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kim SH, Thomas CA, Andre VM, et al. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro 2011;3:e00060.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang N, Gray M, Lu XH, et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 2014;20:536–541.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wood TE, Barry J, Yang Z, et al. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum Mol Genet 2019;28:487–500.PubMedGoogle Scholar
  40. 40.
    Petkau TL, Hill A, Connolly C, et al. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington’s disease-like phenotype in BACHD mice. Hum Mol Genet 2019;00:1–10.Google Scholar
  41. 41.
    Ferrari C, Garcia-miralles M, Caron NS, et al. Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. 2019;1–6.Google Scholar
  42. 42.
    Bradford J, Shin J-Y, Roberts M, et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci 2009;106:22480–22485.CrossRefPubMedGoogle Scholar
  43. 43.
    Crotti A, Benner C, Kerman BE, et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 2014;17:513–521.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang B, Wei WJ, Wang G, et al. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 2015;85:1212–1226.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90:537–548.CrossRefPubMedGoogle Scholar
  46. 46.
    Wheeler VC, White JK, Gutekunst CA, et al. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 2000;9:503–513.CrossRefPubMedGoogle Scholar
  47. 47.
    Menalled LB, Sison JD, Wu Y, et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci 2002;22:8266–8276.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lin CH, Tallaksen-Greene S, Chien WM, et al. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 2001;10:137–144.CrossRefPubMedGoogle Scholar
  49. 49.
    Schilling G, Becher MW, Sharp AH, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999;8:397–407.CrossRefPubMedGoogle Scholar
  50. 50.
    Gu X, Andre VM, Cepeda C, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2007;2:8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thomas EA, Coppola G, Tang B, et al. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet 2011;20:1049–1060.CrossRefPubMedGoogle Scholar
  52. 52.
    Khakh BS, Beaumont V, Cachope R, et al. Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 2017;40:422–437.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Faria A V, Ratnanather JT, Tward DJ, et al. Linking white matter and deep gray matter alterations in premanifest Huntington disease. NeuroImage Clin 2016;11:450–460.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tabrizi SJ, Scahill RI, Durr A, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 2011;10:31–42.CrossRefPubMedGoogle Scholar
  55. 55.
    Jin J, Peng Q, Hou Z, et al. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington’s disease. Hum Mol Genet 2015;24:2508–2527.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Beal MF, Ferrante RJ, Swartz KJ, et al. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 1991;11:1649–1659.CrossRefPubMedGoogle Scholar
  57. 57.
    Ouary S, Bizat N, Altairac S, et al. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: Implications for neuroprotection studies. Neuroscience 2000;97:521–530.CrossRefPubMedGoogle Scholar
  58. 58.
    Langfelder P, Cantle JP, Chatzopoulou D, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 2016;19:623–633.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vodicka P, Mo S, Tousley A, et al. Mass spectrometry analysis of wild-type and knock-in Q140/Q140 Huntington’s disease mouse brains reveals changes in glycerophospholipids including alterations in phosphatidic acid and lyso-phosphatidic acid. J Huntingtons Dis 2015;4:187–201.CrossRefPubMedGoogle Scholar
  60. 60.
    Ament SA, Pearl JR, Cantle JP, et al. Transcriptional regulatory networks underlying gene expression changes in Huntington’s disease. Mol Syst Biol 2018;14:e7435.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jin J, Cheng Y, Zhang Y, et al. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012;123:477–490.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wegrzynowicz M, Holt HK, Friedman DB, et al. Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese. J Proteome Res 2012;11:1118–1132.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Choudhury KR, Das S, Bhattacharyya NP. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington’s disease and control; probable implications to the disease biology. J Proteome 2016;132:155–166.CrossRefGoogle Scholar
  64. 64.
    Ring KL, An MC, Zhang N, et al. Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Huntington’s disease neural stem cells. Stem Cell Rep 2015;5:1023–1038.CrossRefGoogle Scholar
  65. 65.
    Al-Ramahi I, Lu B, Di Paola S, et al. High-throughput functional analysis distinguishes pathogenic, nonpathogenic, and compensatory transcriptional changes in neurodegeneration. Cell Syst. 2018;7:28–40.e4.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mazarei G, Neal SJ, Becanovic K, et al. Expression analysis of novel striatal-enriched genes in Huntington disease. 2010;19:609–622.Google Scholar
  67. 67.
    Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 2005;8:1051–1058.CrossRefPubMedGoogle Scholar
  68. 68.
    Lombroso PJ, Ogren M, Kurup P, et al. Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000Research. 2016;5.Google Scholar
  69. 69.
    Xu J, Kurup P, Foscue E, et al. Striatal-enriched protein tyrosine phosphatase regulates the PTPalpha/Fyn signaling pathway. J Neurochem 2015;134:629–641.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Saavedra A, Giralt A, Rue L, et al. Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci 2011;31:8150–8162.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Garcia-Forn M, Martinez-Torres S, Garcia-Diaz Barriga G, et al. Pharmacogenetic modulation of STEP improves motor and cognitive function in a mouse model of Huntington’s disease. Neurobiol Dis 2018;120:88–97.CrossRefPubMedGoogle Scholar
  72. 72.
    Gladding CM, Sepers MD, Xu J, et al. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington’s disease mouse model. Hum Mol Genet 2012;21:3739–3752.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Leuti A, Laurenti D, Giampa C, et al. Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 2013;52:104–116.CrossRefPubMedGoogle Scholar
  74. 74.
    Giampa C, Laurenti D, Anzilotti S, et al. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One 2010;5:e13417.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Beaumont V, Zhong S, Lin H, et al. Phosphodiesterase 10A inhibition improves cortico-basal ganglia function in Huntington’s disease models. Neuron 2016;92:1220–1237.CrossRefPubMedGoogle Scholar
  76. 76.
    Whiteley EL, Tejeda GS, Baillie GS, et al. PDE10A mutations help to unwrap the neurobiology of hyperkinetic disorders. Cell Signal 2019;60:31–38.CrossRefPubMedGoogle Scholar
  77. 77.
    Subramaniam S, Snyder SH. Huntington’s Disease is a disorder of the corpus striatum: Focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology 2011;60:1187–1192.CrossRefPubMedGoogle Scholar
  78. 78.
    Mealer RG, Subramaniam S, Snyder SH. Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington’s disease. J Neurosci 2013;33:4206–4210.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lee JH, Sowada MJ, Boudreau RL, et al. Rhes suppression enhances disease phenotypes in Huntington’s disease mice. J Huntingtons Dis 2014;3:65–71.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lee JH, Tecedor L, Chen YH, et al. Reinstating aberrant mTORC1 activity in huntington’s disease mice improves disease phenotypes. Neuron. 2015;85:303–315.CrossRefPubMedGoogle Scholar
  81. 81.
    Desplats PA, Lambert JR, Thomas EA. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington’s disease. Neurobiol Dis 2008;31:298–308.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hachigian LJ, Carmona V, Fenster RJ, et al. Control of Huntington’s disease-associated phenotypes by the striatum-enriched transcription factor Foxp2. Cell Rep 2017;21:2688–2695.CrossRefPubMedGoogle Scholar
  83. 83.
    Deng YP, Albin RL, Penney JB, et al. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 2004;27:143–164.CrossRefPubMedGoogle Scholar
  84. 84.
    Richfield EK, Maguire-Zeiss KA, Vonkeman HE, et al. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 1995;38:852–861.CrossRefPubMedGoogle Scholar
  85. 85.
    Sapp E, Ge P, Aizawa H, et al. Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington’s disease using high resolution image analysis. Neuroscience 1995;64:397–404.CrossRefPubMedGoogle Scholar
  86. 86.
    Fusco FR, Chen Q, Lamoreaux WJ, et al. Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci 1999;19:1189–1202.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 2007;445:643–647.CrossRefPubMedGoogle Scholar
  88. 88.
    Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 2008;28:10814–10824.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Shen W, Tian X, Day M, et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 2007;10:1458–1466.CrossRefPubMedGoogle Scholar
  90. 90.
    Baydyuk M, Russell T, Liao G-Y, et al. TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc Natl Acad Sci 2011;108:1669–1674.CrossRefPubMedGoogle Scholar
  91. 91.
    Besusso D, Geibel M, Kramer D, et al. BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat Commun 2013;4:1–12.CrossRefGoogle Scholar
  92. 92.
    Merienne N, Meunier C, Schneider A, et al. Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures. Cell Rep. 2019;26:2477–2493.e9.CrossRefPubMedGoogle Scholar
  93. 93.
    Shema R, Kulicke R, Cowley GS, et al. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc Natl Acad Sci 2014;112:268–272.CrossRefPubMedGoogle Scholar
  94. 94.
    André VM, Fisher YE, Levine MS. Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington’s disease. Front Syst Neurosci 2011;5:1–11.CrossRefGoogle Scholar
  95. 95.
    Barry J, Akopian G, Cepeda XC, et al. Striatal direct and indirect pathway output structures are differentially altered in mouse models of Huntington’s disease. J Neurosci 2018;38:4678–4694.Google Scholar
  96. 96.
    Deng Y-P, Wong T, Wan JY, et al. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington’s disease. Front Syst Neurosci 2014;8:1–15.CrossRefGoogle Scholar
  97. 97.
    Goodliffe JW, Song H, Rubakovic A, et al. Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/− mouse model of Huntington’s Disease. PLoS One 2018;13:1–28.CrossRefGoogle Scholar
  98. 98.
    Mattis VB, Tom C, Akimov S, et al. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 2014;24:3257–3271.CrossRefGoogle Scholar
  99. 99.
    Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep 2017;19:1365–1377.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Lim RG, Salazar LL, Wilton DK, et al. Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice. Nat Neurosci 2017;20:648–660.CrossRefGoogle Scholar
  101. 101.
    Ward JM, La Spada AR. The expanding world of stem cell modeling of Huntington’s disease: creating tools with a promising future. Genome Med 2012;4:68.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    An MC, Zhang N, Scott G, et al. Genetic correction of huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012;11:253–263.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Castiglioni V, Onorati M, Rochon C, et al. Induced pluripotent stem cell lines from Huntington’s disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Neurobiol Dis 2012;46:30–40.CrossRefPubMedGoogle Scholar
  104. 104.
    Jeon I, Lee N, Li J-Y, et al. Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 2012;30:2054–2062.CrossRefPubMedGoogle Scholar
  105. 105.
    Kaye JA, Finkbeiner S. Modeling Huntington’s disease with induced pluripotent stem cells. Mol Cell Neurosci 2013;56:50–64.CrossRefPubMedGoogle Scholar
  106. 106.
    Vachey G, Deglon N. CRISPR/Cas9-mediated genome editing for Huntington’s disease. Methods Mol Biol 2018;1780:463–481.Google Scholar
  107. 107.
    An MC, O’Brien RN, Zhang N, et al. Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system. PLoS Curr 2014;6.Google Scholar
  108. 108.
    Shin JW, Kim K-H, Chao MJ, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 2016;25:4566–4576.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Monteys AM, Ebanks SA, Keiser MS, et al. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 2017;25:12–23.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Xu X, Tay Y, Sim B, et al. Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep 2017;8:619–633.CrossRefGoogle Scholar
  111. 111.
    Ritch JJ, Valencia A, Alexander J, et al. Multiple phenotypes in Huntington disease mouse neural stem cells. Mol Cell Neurosci 2012;50:70–81.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Molero AE, Arteaga-Bracho EE, Chen CH, et al. Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci 2016;113:5736–5741.CrossRefPubMedGoogle Scholar
  113. 113.
    Humbert S. Is Huntington disease a developmental disorder? EMBO Rep 2010;11:899–899.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Barnat M, Le Friec J, Benstaali C, et al. Huntingtin-mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron 2017;93:99–114.CrossRefPubMedGoogle Scholar
  115. 115.
    Mehta SR, Tom CM, Wang Y, et al. Human Huntington’s disease iPSC-derived cortical neurons display altered transcriptomics, morphology, and maturation. Cell Rep. 2018;25:1081–1096.e6.CrossRefPubMedGoogle Scholar
  116. 116.
    Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761–772.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen H, Kankel MW, Su SC, et al. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death Differ 2018;25:646–660.PubMedCentralGoogle Scholar
  118. 118.
    Ferraiuolo L. The non-cell-autonomous component of ALS: new in vitro models and future challenges. Biochem Soc Trans 2014;42:1270–1274.CrossRefPubMedGoogle Scholar
  119. 119.
    Dawson TM. Non-autonomous cell death in Parkinson’s disease. Lancet Neurol Engl; 2008. p. 474–475.Google Scholar
  120. 120.
    Chai M, Kohyama J. Non-cell-autonomous neurotoxicity in Parkinson’s disease mediated by Astroglial alpha-Synuclein. Stem Cell Rep 2019;12:183–185.CrossRefGoogle Scholar
  121. 121.
    Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 1978;139:43–63.CrossRefPubMedGoogle Scholar
  122. 122.
    Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985;5:776–794.CrossRefPubMedGoogle Scholar
  123. 123.
    Altar CA, Cai N, Bliven T, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997;389:856–860.CrossRefPubMedGoogle Scholar
  124. 124.
    Kokaia Z, Andsberg G, Yan Q, et al. Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 1998;154:289–301.CrossRefPubMedGoogle Scholar
  125. 125.
    Bunner KD, Rebec G V. Corticostriatal dysfunction in Huntington’s disease: the basics. Front Hum Neurosci 2016;10:1–12.CrossRefGoogle Scholar
  126. 126.
    Cudkowicz M, Kowall NW. Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol 1990;27:200–204.CrossRefPubMedGoogle Scholar
  127. 127.
    Sotrel A, Paskevich PA, Kiely DK, et al. Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 1991;41:1117–1123.CrossRefPubMedGoogle Scholar
  128. 128.
    Cepeda C, Wu N, André VM, et al. The corticostriatal pathway in Huntington’s disease. Prog Neurobiol 2007;81:253–271.CrossRefPubMedGoogle Scholar
  129. 129.
    Rebec G V. Corticostriatal network dysfunction in Huntington’s disease: deficits in neural processing, glutamate transport, and ascorbate release. CNS Neurosci Ther. 2018;24:281–291.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Puigdellívol M, Cherubini M, Brito V, et al. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington’s disease. Hum Mol Genet 2015;24:7265–7285.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Murmu RP, Li W, Holtmaat A, et al. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington’s disease. J Neurosci 2013;33:12997–13009.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Cummings DM, Milnerwood AJ, Dallérac GM, et al. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington’s disease. Hum Mol Genet 2006;15:2856–2868.CrossRefPubMedGoogle Scholar
  133. 133.
    Anglada-Huguet M, Xifró X, Giralt A, et al. Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington’s disease. Mol Neurobiol 2014;49:784–795.CrossRefPubMedGoogle Scholar
  134. 134.
    Anglada-Huguet M, Giralt A, Rué L, et al. Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription dysfunction in Huntington’s disease. Biochim Biophys Acta Mol basis Dis 2016;1862:1255–1266.Google Scholar
  135. 135.
    Smith R, Petersen A, Bates GP, et al. Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington’s disease, a possible culprit in synaptic dysfunction. Neurobiol Dis 2005;20:673–684.CrossRefPubMedGoogle Scholar
  136. 136.
    Torres-Peraza JF, Giralt A, Garcia-Martinez JM, et al. Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2008;29:409–421.CrossRefPubMedGoogle Scholar
  137. 137.
    Hintiryan H, Foster NN, Bowman I, et al. The mouse cortico-striatal projectome. Nat Neurosci 2016;19:1100–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Estrada-Sanchez AM, Burroughs CL, Cavaliere S, et al. Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington’s disease. J Neurosci 2015;35:4440–4451.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Gorski JA, Talley T, Qiu M, et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 2002;22:6309–6314.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Reiner A, Deng Y-P. Disrupted striatal neuron inputs and outputs in Huntington’s disease. CNS Neurosci Ther 2018;24:250–280.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Deng YP, Wong T, Bricker-Anthony C, et al. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington’s disease mice. Neurobiol Dis 2013;60:89–107.CrossRefPubMedGoogle Scholar
  142. 142.
    Jansen AHP, van Hal M, op den Kelder IC, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 2017;65:50–61.CrossRefPubMedGoogle Scholar
  143. 143.
    Faideau M, Kim J, Cormier K, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 2010;19:3053–3067.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541:481–487.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Clarke LE, Liddelow SA, Chakraborty C, et al. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 2018;115:E1896–E1905.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Meunier C, Merienne N, Jollé C, et al. Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington’s disease. Glia 2016;64:1841–1856.CrossRefPubMedGoogle Scholar
  147. 147.
    Tong X, Ao Y, Faas GC, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci 2014;17:694–703.Google Scholar
  148. 148.
    Juopperi TA, Kim WR, Chiang CH, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntingtons disease patient cells. Mol Brain 2012;5:1.CrossRefGoogle Scholar
  149. 149.
    Osipovitch M, Asenjo Martinez A, Mariani JN, et al. Human ESC-derived chimeric mouse models of Huntington’s disease reveal cell-intrinsic defects in glial progenitor cell differentiation. Cell Stem Cell. 2019;24:107–122.e7.CrossRefPubMedGoogle Scholar
  150. 150.
    Hsiao HY, Chen YC, Chen HM, et al. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in huntington’s disease. Hum Mol Genet 2013;22:1826–1842.CrossRefPubMedGoogle Scholar
  151. 151.
    Benraiss A, Wang S, Herrlinger S, et al. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 2016;7:1–13.CrossRefGoogle Scholar
  152. 152.
    Ferrante RJ, Gutekunst C A, Persichetti F, et al. Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J Neurosci. 1997;17:3052–3063.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Tai YF, Pavese N, Gerhard A, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007;130:1759–1766.CrossRefPubMedGoogle Scholar
  154. 154.
    Pavese N, Gerhard A, Tai YF, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638–1643.CrossRefPubMedGoogle Scholar
  155. 155.
    Politis M, Lahiri N, Niccolini F, et al. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol Dis 2015;83:115–121.CrossRefPubMedGoogle Scholar
  156. 156.
    Silvestroni A, Faull RLM, Strand AD, et al. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 2009;20:1098–1103.CrossRefPubMedGoogle Scholar
  157. 157.
    Bjorkqvist M, Wild EJ, Thiele J, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 2008;205:1869–1877.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001;60:161–172.CrossRefPubMedGoogle Scholar
  159. 159.
    Labadorf A, Hoss AG, Lagomarsino V, et al. Correction: RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 2016;11:1–21.CrossRefGoogle Scholar
  160. 160.
    Singhrao SK, Neal JW, Morgan BP, et al. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 1999;159:362–376.CrossRefPubMedGoogle Scholar
  161. 161.
    Simmons DA, Casale M, Alcon B, et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 2007;55:1074–1084.CrossRefPubMedGoogle Scholar
  162. 162.
    Wacker JL, Huang S-Y, Steele AD, et al. Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 2009;29:9104–9114.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Franciosi S, Ryu JK, Shim Y, et al. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2012;45:438–449.CrossRefPubMedGoogle Scholar
  164. 164.
    Ochaba J, Monteys AM, O’Rourke JG, et al. PIAS1 regulates mutant Huntingtin accumulation and Huntington’s disease-associated phenotypes in vivo. Neuron 2016;90:507–520.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Khoshnan A, Sabbaugh A, Calamini B, et al. IKK β and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Hum Mol Genet 2017;26:4267–4277.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Kraft AD, Kaltenbach LS, Lo DC, et al. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging. 2012;33:621.e17–33.CrossRefGoogle Scholar
  167. 167.
    Di Paola M, Luders E, Cherubini A, et al. Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington’s disease. Cereb Cortex 2012;22:2858–2866.CrossRefPubMedGoogle Scholar
  168. 168.
    Reading SAJ, Yassa MA, Bakker A, et al. Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res 2005;140:55–62.CrossRefPubMedGoogle Scholar
  169. 169.
    Rosas HD, Lee SY, Bender AC, et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage 2010;49:2995–3004.CrossRefPubMedGoogle Scholar
  170. 170.
    McColgan P, Gregory S, Seunarine KK, et al. Brain regions showing white matter loss in Huntington’s disease are enriched for synaptic and metabolic genes. Biol Psychiatry 2018;83:456–465.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Meng Y, Jiang J, Bachevalier J, et al. Developmental whole brain white matter alterations in transgenic Huntington’s disease monkey. Sci Rep 2017;7:379.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Zuccato C, Ciammola A, Rigamonti D, et al. Loss of Huntingtin-mediated BDNF gene transcription huntingtin-mediate in Huntington’s disease. Adv Sci 2001;293:493–499.Google Scholar
  173. 173.
    Gauthier LR, Charrin BC, Borrell-Pagès M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004;118:127–138.CrossRefPubMedGoogle Scholar
  174. 174.
    Ginés S, Paoletti P, Alberch J. Impaired TrkB-mediated ERK1/2 activation in huntington disease knock-in striatal cells involves reduced p52/p46 Shc expression. J Biol Chem 2010;285:21537–21548.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    McGuire JR, Rong J, Li S-H, et al. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 2006;281:3552–3559.CrossRefPubMedGoogle Scholar
  176. 176.
    Engelender S, Sharp AH, Colomer V, et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 1997;6:2205–2212.CrossRefPubMedGoogle Scholar
  177. 177.
    Conner JM, Lauterborn JC, Yan Q, et al. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997;17:2295–2313.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ginés S, Bosch M, Marco S, et al. Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 2006;23:649–658.CrossRefPubMedGoogle Scholar
  179. 179.
    Zuccato C, Marullo M, Conforti P, et al. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 2008;18:225–238.CrossRefPubMedGoogle Scholar
  180. 180.
    Brito V, Puigdellívol M, Giralt A, et al. Imbalance of p75NTR/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies. Cell Death Dis 2013;4:1–15.CrossRefGoogle Scholar
  181. 181.
    Liot G, Zala D, Pla P, et al. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 2013;33:6298–6309.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. 2011;228:118–125.Google Scholar
  183. 183.
    Li Y, Yui D, Luikart BW, et al. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 2012;109:15491–15496.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Rauskolb S, Zagrebelsky M, Dreznjak A, et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 2010;30:1739–1749.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Mattis VB, Tom C, Akimov S, et al. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 2015;24:3257–3271.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 2010;30:14708–14718.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    da Fonsêca VS, da Silva Colla AR, de Paula Nascimento-Castro C, et al. Brain-derived neurotrophic factor prevents depressive-like behaviors in early-symptomatic YAC128 Huntington’s disease mice. Mol Neurobiol 2018;55:7201–7215.CrossRefPubMedGoogle Scholar
  188. 188.
    Connor B, Sun Y, Von Hieber D, et al. AAV 1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington’s disease. Gene Ther 2016;23:283–295.CrossRefPubMedGoogle Scholar
  189. 189.
    Giralt A, Friedman HC, Caneda-Ferrón B, et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther 2010;17:1294–1308.CrossRefPubMedGoogle Scholar
  190. 190.
    Gharami K, Xie Y, An JJ, et al. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J Neurochem 2008;105:369–379.CrossRefPubMedGoogle Scholar
  191. 191.
    Yu C, Li CH, Chen S, et al. Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease. Sci Rep 2018;8:1–11.CrossRefGoogle Scholar
  192. 192.
    Zhao X, Chen X-Q, Han E, et al. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. Proc Natl Acad Sci 2016;113:E5655–E5664.CrossRefPubMedGoogle Scholar
  193. 193.
    Unterwald EM, Page ME, Brown TB, et al. Behavioral and transcriptome alterations in male and female mice with postnatal deletion of TrkB in dorsal striatal medium spiny neurons. 2013;1–14.Google Scholar
  194. 194.
    Plotkin JL, Day M, Peterson JD, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron. 2014;83:178–188.Google Scholar
  195. 195.
    Fulmer CG, VonDran MW, Stillman AA, et al. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 2014;34:8186–96.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Poyhonen S, Er S, Domanskyi A, et al. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol 2019;10:486.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Zuccato C, Liber D, Ramos C, et al. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 2005;52:133–139.CrossRefPubMedGoogle Scholar
  198. 198.
    Zuccato C, Marullo M, Vitali B, et al. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 2011;6.Google Scholar
  199. 199.
    Canals JM, Pineda JR, Torres-Peraza JF, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004;24:7727–7739.Google Scholar
  200. 200.
    Wang L, Lin F, Wang J, et al. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res 2012;1449:69–82.CrossRefPubMedGoogle Scholar
  201. 201.
    Hong Y, Zhao T, Li X-J, et al. Mutant Huntingtin impairs BDNF release from astrocytes by disrupting conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 2016;36:8790–8801.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Bossi SR, Simpson JR, Isacson O. Age dependence of striatal neuronal death caused by mitochondrial dysfunction. Neuroreport 1993;4:73–76.CrossRefPubMedGoogle Scholar
  203. 203.
    Yano H, Baranov S V., Baranova O V., et al. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 2014;17:822–831.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Zheng J, Winderickx J, Franssens V, et al. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front Mol Neurosci 2018;11:329.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Oliveira JMA, Gonçalves J. In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum. J Biol Chem 2009;284:5010–5020.CrossRefPubMedGoogle Scholar
  206. 206.
    Hamilton J, Pellman JJ, Brustovetsky T, et al. Oxidative metabolism in YAC128 mouse model of Huntington’s disease. Hum Mol Genet 2015;24:4862–4878.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Cui L, Jeong H, Borovecki F, et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59–69.CrossRefPubMedGoogle Scholar
  208. 208.
    Weydt P, Pineda V V., Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab 2006;4:349–362.CrossRefPubMedGoogle Scholar
  209. 209.
    Hering T, Birth N, Taanman JW, et al. Selective striatal mtDNA depletion in end-stage Huntington’s disease R6/2 mice. Exp Neurol 2015;266:22–29.CrossRefPubMedGoogle Scholar
  210. 210.
    Kedaigle AJ, Fraenkel E, Atwal RS, et al. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet. 2019Google Scholar
  211. 211.
    Kojer K, Hering T, Bazenet C, et al. Huntingtin aggregates and mitochondrial pathology in skeletal muscle but not heart of late-stage R6/2 mice. J Huntingtons Dis 2019; 8(2):145–15CrossRefPubMedGoogle Scholar
  212. 212.
    Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington’s disease: therapeutic prospects. Mol Cell Biochem 2014;389:277–291.CrossRefPubMedGoogle Scholar
  213. 213.
    Boussicault L, Hérard AS, Calingasan N, et al. Impaired brain energy metabolism in the BACHD mouse model of Huntington’s disease: Critical role of astrocyte-neuron interactions. J Cereb Blood Flow Metab 2014;34:1500–1510.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Skotte NH, Andersen J V., Santos A, et al. Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep 2018;23:2211–2224.CrossRefPubMedGoogle Scholar
  215. 215.
    Reddy PH. Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 2014;19:951–955.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Shirendeb UP, Calkins MJ, Manczak M, et al. Mutant Huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 2012;21:406–420.CrossRefPubMedGoogle Scholar
  217. 217.
    Song W, Chen J, Petrilli A, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 2011;17:377–382.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Kim J, Moody JP, Edgerly CK, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 2010;19:3919–3935.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Costa V, Giacomello M, Hudec R, et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2010;2:490–503.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Orr AL, Li S, Wang C-E, et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 2008;28:2783–2792.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Chang DTW, Rintoul GL, Pandipati S, et al. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 2006;22:388–400.CrossRefPubMedGoogle Scholar
  222. 222.
    Cooper JK, Schilling G, Peters MF, et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 1998;7:783–790.CrossRefPubMedGoogle Scholar
  223. 223.
    DeGuire SM, Ruggeri FS, Fares M-B, et al. N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting. J Biol Chem 2018;293:18540–18558.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Gu X, Cantle JP, Greiner ER, et al. N17 modifies mutant huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice. Neuron 2015;85:726–741.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Weiberth KF, Tsvetkov AS, Yang XW, et al. Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J Clin Invest 2016;126:3585–3597.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Warby SC, Chan EY, Metzler M, et al. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet 2005;14:1569–1577.CrossRefPubMedGoogle Scholar
  227. 227.
    Bowles KR, Jones L. Kinase signalling in Huntington’s disease. J Huntingtons Dis 2014;3:89–123.PubMedGoogle Scholar
  228. 228.
    Saavedra A, Alberch J, Pérez-Navarro E. Don’t take away my P: phosphatases as therapeutic targets in Huntington’s disease. 2012; In Ersoy Tunali (Ed.), Huntington’s disease - core concepts and current advances. Intech, pp. 465–494 Chapter 20.Google Scholar
  229. 229.
    Humbert S, Bryson EA, Cordelières FP, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev Cell 2002;2:831–837.CrossRefPubMedGoogle Scholar
  230. 230.
    Zhao T, Hong Y, Li S, et al. Compartment-dependent degradation of mutant huntingtin accounts for its preferential accumulation in neuronal processes. J Neurosci 2016;36:8317–8328.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Tydlacka S, Wang C-E, Wang X, et al. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 2008;28:13285–13295.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Hong Y, Zhao T, Li X-J, et al. Mutant huntingtin inhibits αB-crystallin expression and impairs exosome secretion from astrocytes. J Neurosci 2017;37:9550–9563.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    McGeer EG, McGeer PL. Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 1976;263:517–519.CrossRefPubMedGoogle Scholar
  234. 234.
    Coyle JT, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 1976;263:244–246.CrossRefPubMedGoogle Scholar
  235. 235.
    Cui H, Hayashi A, Sun H-S, et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 2007;27:9901–9915.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Zhang Y, Su P, Liang P, et al. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit. J Neurosci 2010;30:7575–7586.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Petralia RS. Distribution of extrasynaptic NMDA receptors on neurons. ScientificWorldJournal 2012;2012:267120.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010;11:682–696.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Parsons MP, Vanni MP, Woodard CL, et al. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 2016;7:1–12.CrossRefGoogle Scholar
  240. 240.
    Siebzehnrübl FA, Raber KA, Urbach YK, et al. Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci 2018;115:E8765–E8774.CrossRefPubMedGoogle Scholar
  241. 241.
    Milnerwood AJ, Gladding CM, Pouladi MA, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010;65:178–190.CrossRefPubMedGoogle Scholar
  242. 242.
    Marco S, Giralt A, Petrovic MM, et al. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington’s disease models. Nat Med 2013;19:1030–1038.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Martinez-Turrillas R, Puerta E, Chowdhury D, et al. The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation. Neurobiol Dis 2012;48:290–298.CrossRefPubMedGoogle Scholar
  244. 244.
    Ali NJ, Levine MS. Changes in expression of N-methyl-D-aspartate receptor subunits occur early in the R6/2 mouse model of Huntington’s disease. Dev Neurosci 2006;28:230–238.CrossRefPubMedGoogle Scholar
  245. 245.
    Cha JH, Frey AS, Alsdorf SA, et al. Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos. Trans R Soc Lond B Biol Sci 1999;354:981–989.CrossRefGoogle Scholar
  246. 246.
    Jarabek BR, Yasuda RP, Wolfe BB. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain 2004;127:505–516.CrossRefPubMedGoogle Scholar
  247. 247.
    Li L, Fan M, Icton CD, et al. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging 2003;24:1113–1121.CrossRefPubMedGoogle Scholar
  248. 248.
    Benn CL, Slow EJ, Farrell LA, et al. Glutamate receptor abnormalities in the YAC128 transgenic mouse model of Huntington’s disease. Neuroscience 2007;147:354–372.CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Ambroziak W, Fourie C, Montgomery JM. SAP97-mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington’s disease. Hippocampus 2018;28:707–723.CrossRefPubMedGoogle Scholar
  250. 250.
    Petr GT, Schultheis LA, Hussey KC, et al. Decreased expression of GLT-1 in the R6/2 model of Huntington’s disease does not worsen disease progression. Eur J Neurosci 2013;38:2477–2490.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Lievens JC, Woodman B, Mahal A, et al. Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 2001;8:807–821.CrossRefPubMedGoogle Scholar
  252. 252.
    Miller BR, Dorner JL, Shou M, et al. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 2008;153:329–337.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Behrens PF, Franz P, Woodman B, et al. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain. 2002;125:1908–1922.CrossRefPubMedGoogle Scholar
  254. 254.
    Huang K, Kang MH, Askew C, et al. Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2010;40:207–215.CrossRefPubMedGoogle Scholar
  255. 255.
    Jiang R, Diaz-Castro B, Looger LL, et al. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J Neurosci 2016;36:3453–3470.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Lee W, Reyes RC, Gottipati MK, et al. Enhanced Ca2+−dependent glutamate release from astrocytes of the BACHD Huntington’s disease mouse model. Neurobiol Dis 2013;58:192–199.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Cho IK, Yang B, Forest C, et al. Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys. PLoS One. 2019;14:e0214156. CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Bunner KD, Rangel-Barajas C, McCormick BM, et al. Behavioral and electrophysiological improvements following up-regulation of GLT-1 in the Q175 Huntington’s mouse. Abstr Soc Neurosci 2016;418.09.Google Scholar
  259. 259.
    Smith-Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem. 2019;150:346–365.Google Scholar
  260. 260.
    Dallerac GM, Levasseur G, Vatsavayai SC, et al. Dysfunctional dopaminergic neurones in mouse models of Huntington’s disease: A role for SK3 channels. Neurodegener Dis 2015;15:93–108.CrossRefPubMedGoogle Scholar
  261. 261.
    Langfelder P, Gao F, Wang N, et al. MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice. PLoS One 2018;13:1–20.CrossRefGoogle Scholar
  262. 262.
    Novati A, Hentrich T, Wassouf Z, et al. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 2018;8:5803.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Brochier C, Gaillard M-C, Diguet E, et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics 2008;33:170–179.CrossRefPubMedGoogle Scholar
  264. 264.
    Le Gras S, Keime C, Anthony A, et al. Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature. Sci Rep 2017;7:42875.CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Ament SA, Pearl JR, Grindeland A, et al. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington’s disease CAG knock-in mice across multiple genetic backgrounds. Hum Mol Genet 2017;26:913–922.CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Hervas-Corpion I, Guiretti D, Alcaraz-Iborra M, et al. Early alteration of epigenetic-related transcription in Huntington’s disease mouse models. Sci Rep 2018;8:9925.CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Becanovic K, Pouladi MA, Lim RS, et al. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet 2010;19:1438–1452.CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Luthi-Carter R, Strand AD, Hanson SA, et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s disease mouse models reveal context-independent effects. Hum Mol Genet 2002;11:1927–1937.CrossRefPubMedGoogle Scholar
  269. 269.
    Fossale E, Seong IS, Coser KR, et al. Differential effects of the Huntington’s disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Hum Mol Genet 2011;20:4258–4267.CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Neueder A, Bates GP. A common gene expression signature in Huntington’s disease patient brain regions. BMC Med Genet 2014;7:60.Google Scholar
  271. 271.
    Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 2006;20:2183–2192.CrossRefPubMedGoogle Scholar
  272. 272.
    Yamanaka T, Miyazaki H, Oyama F, et al. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J 2008;27:827–839.CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Harjes P, Wanker EE. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 2003;28:425–433.CrossRefPubMedGoogle Scholar
  274. 274.
    Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 2007;27:6972–6983.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Zuccato C, Tartari M, Crotti A, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003;35:76–83.CrossRefPubMedGoogle Scholar
  276. 276.
    Vashishtha M, Ng CW, Yildirim F, et al. Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci 2013;110:E3027–E3036.CrossRefPubMedGoogle Scholar
  277. 277.
    Sadri-Vakili G, Cha J-HJ. Mechanisms of disease: histone modifications in Huntington’s disease. Nat Clin Pract Neurol 2006;2:330–338.CrossRefPubMedGoogle Scholar
  278. 278.
    Gray SG. Targeting Huntington’s disease through histone deacetylases. Clin Epigenetics 2011;2:257–277.CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    McCampbell A, Taylor JP, Taye AA, et al. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 2000;9:2197–2202.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations