Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?

  • Karen Henriette PinkeEmail author
  • Sofia Fernanda Gonçalves Zorzella-Pezavento
  • Thais Fernanda de Campos Fraga-Silva
  • Luiza Ayumi Nishiyama Mimura
  • Larissa Ragozo Cardoso de Oliveira
  • Larissa Lumi Watanabe Ishikawa
  • Ana Angélica Henrique Fernandes
  • Vanessa Soares Lara
  • Alexandrina Sartori
Original Article


Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG35-55 and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to in vitro stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.


Experimental autoimmune encephalomyelitis Multiple sclerosis Blood-CNS barrier Ketotifen fumarate Inflammasome Oxidative stress 



The authors are grateful to researchers Camila Peres Buzalaf and Ana Paula Campanelli for their help concerning cytometry data analysis. The authors also thank Fatima Silveira, Luiz Carlos da Silva and Hélio Kushima for technical support. Funding was provided by São Paulo Research Foundation – FAPESP [grant number 2014/00239-6]. The authors declare no conflicts of interest.

Required Author Forms Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2019_775_MOESM1_ESM.pdf (486 kb)
ESM 1 (PDF 486 kb)
13311_2019_775_MOESM2_ESM.tif (104 kb)
High resolution image (TIF 103 kb)
13311_2019_775_Fig9_ESM.png (51 kb)

(PNG 50 kb)


  1. 1.
    Howard J, Trevick S, Younger DS. Epidemiology of multiple sclerosis. Neurol Clin. 2016;34: 919-939.CrossRefPubMedGoogle Scholar
  2. 2.
    Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378:169-180.CrossRefPubMedGoogle Scholar
  3. 3.
    Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014;83:1022-1024.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545-558.CrossRefPubMedGoogle Scholar
  5. 5.
    Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015;5:e00362.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA. Multiple sclerosis. Nat Rev Dis Primers. 2018;4:43.CrossRefPubMedGoogle Scholar
  7. 7.
    Holmoy T. Immunopathogenesis of multiple sclerosis: concepts and controversies. Acta Neurol Scand. 2007;187:39-45.CrossRefGoogle Scholar
  8. 8.
    Fletcher JM, Lalor SJ, Sweeney CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1-11.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miller SD, Karpus WJ, Davidson TS. Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc Immun 2010;88:15.1.1-15.1.20.Google Scholar
  10. 10.
    Constantinescu CS, Farooqi N, O'Brien K, et al. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164:1079-1106.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133:223-244.CrossRefPubMedGoogle Scholar
  12. 12.
    Almolda B, Gonzalez B, Castellano B. Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J Neuroimmunol. 2010;223:39-54.CrossRefPubMedGoogle Scholar
  13. 13.
    Schulz M, Engelhardt B. The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res. 2005;2:8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Flach AC, Litke T, Strauss J, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci. USA. 2016;113:3323-3328.CrossRefPubMedGoogle Scholar
  15. 15.
    Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;1:29-38.CrossRefGoogle Scholar
  16. 16.
    Osorio-Querejeta I, Saenz-Cuesta M, Munoz-Culla M, et al. Models for studying myelination, demyelination and remyelination. Neuromolecular Med. 2017;19:181-192.CrossRefPubMedGoogle Scholar
  17. 17.
    Lubetzki C, Stankoff B. Demyelination in multiple sclerosis. Handb Clin Neurol. 2014;122: 89-99.CrossRefPubMedGoogle Scholar
  18. 18.
    Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14:406-419.CrossRefPubMedGoogle Scholar
  19. 19.
    Hernandez-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. 2013;2013:413465.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010;221:7-14.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Girolamo F, Coppola C, Ribatti D. Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun. 2017;65:68-89.CrossRefPubMedGoogle Scholar
  22. 22.
    Hendriksen E, van Bergeijk D, Oosting RS, et al. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119-133.CrossRefPubMedGoogle Scholar
  23. 23.
    Kempuraj D, Selvakumar GP, Zaheer S, et al. Cross-talk between glia, neurons and mast cells in neuroinflammation associated with Parkinson's disease. J Neuroimmune Pharmacol. 2017;13:100-112.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr. 2017;2:S1001-S1007.CrossRefGoogle Scholar
  25. 25.
    Gieseck RL, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018;18:62-76.CrossRefPubMedGoogle Scholar
  26. 26.
    Nascimento CR, Andrade D, Carvalho-Pinto CE, Serra RR, et al. Mast cell coupling to the Kallikrein-Kinin system fuels intracardiac parasitism and worsens heart pathology in experimental Chagas disease. Front Immunol. 2017;8:840.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yu X, Kasprick A, Petersen F. Revisiting the role of mast cells in autoimmunity. Autoimmun Rev. 2015;14:751-759.CrossRefPubMedGoogle Scholar
  28. 28.
    Xu Y, Chen G. Mast cell and autoimmune diseases. Mediators Inflamm. 2015;2015:246126.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kruger PG. Mast cells and multiple sclerosis: a quantitative analysis. Neuropathol Appl Neurobiol. 27;2001:275-280.CrossRefPubMedGoogle Scholar
  30. 30.
    Couturier N, Zappulla JP, Lauwers-Cances V, et al. Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol. 2008;195:176-185.CrossRefPubMedGoogle Scholar
  31. 31.
    Rozniecki JJ, Hauser SL, Stein M, Lincoln R, Theoharides TC. Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol. 1995;37:63-66.CrossRefPubMedGoogle Scholar
  32. 32.
    Secor VH, Secor WE, Gutekunst CA, Brown MA. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med. 2000;191:813-822.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gregory GD, Robbie-Ryan M, Secor VH, et al. Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol. 2005;35:3478-3486.CrossRefPubMedGoogle Scholar
  34. 34.
    Christy AL, Walker ME, Hessner MJ, et al. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun. 2013;42:50-61.CrossRefPubMedGoogle Scholar
  35. 35.
    Hong GU, Kim NG, Jeoung D, et al. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells. J Neuroimmunol. 2013;260:60-73.CrossRefPubMedGoogle Scholar
  36. 36.
    Yin JJ, Hu XQ, Mao ZF, et al. Neutralization of Interleukin-9 Decreasing Mast Cells Infiltration in Experimental Autoimmune Encephalomyelitis. Chin Med J (Engl). 2017;130:964-971.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Voehringer D. Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013;13:362-375.CrossRefPubMedGoogle Scholar
  38. 38.
    Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman AJ. Brain mast cell relationship to neurovasculature during development. Brain Res. 2007;1171:18-29.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cildir G, Pant H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med. 2017;214:2491-2506.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vukman KV, Forsonits A, Oszvald A, et al. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65-73.CrossRefPubMedGoogle Scholar
  41. 41.
    Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochem Biophys Acta 2012;1822:21-33.Google Scholar
  42. 42.
    Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br J Pharmacol. 2013;170:23-37.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Borriello F, Granata F, Varricchi G, et al. Immunopharmacological modulation of mast cells. Curr Opin Pharmacol. 2014;17:45-57.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang T, Finn DF, Barlow JW, et al. Mast cell stabilisers. Eur J Pharmacol. 2016;778:158-168.CrossRefPubMedGoogle Scholar
  45. 45.
    Baba A, Tachi M, Ejima Y, et al. Anti-allergic drugs tranilast and ketotifen dose-dependently exert mast cell-stabilizing properties. Cell Physiol Biochem. 2016;38:15-27.CrossRefPubMedGoogle Scholar
  46. 46.
    Grant SM, Goa KL, Fitton A, et al. Ketotifen. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs 1990;40:412-448.CrossRefPubMedGoogle Scholar
  47. 47.
    Wade L, Bielory L, Rudner S. Ophthalmic antihistamines and H1-H4 receptors. Curr Opin Allergy Clin Immunol. 2012;12:510-516.CrossRefPubMedGoogle Scholar
  48. 48.
    Hsu DZ, Chu PY, Chen SJ, et al. Mast cell stabilizer ketotifen inhibits gouty inflammation in rats. Am J Ther. 2016;23:1009-1015.CrossRefGoogle Scholar
  49. 49.
    Lai DS, Lue KH, Hsieh JC, et al. The comparison of the efficacy and safety of cetirizine, oxatomide, ketotifen, and a placebo for the treatment of childhood perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2002;89:589-598.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen Z, Sun H, Wang J, et al. Role of ketotifen on metabolic profiles, inflammation and oxidative stress in diabetic rats. Endocr J. 2017;64:411-416.CrossRefPubMedGoogle Scholar
  51. 51.
    El-Haggar SM, Farrag WF, Kotkata FA. Effect of ketotifen in obese patients with type 2 diabetes mellitus. J Diabetes Complications 2015;29:427-432.CrossRefPubMedGoogle Scholar
  52. 52.
    Karaayvaz M, Caliskaner Z, Turan M, et al. Levothyroxine versus ketotifen in the treatment of patients with chronic urticaria and thyroid autoimmunity. J Dermatolog Treat. 2002;13:165-172.CrossRefPubMedGoogle Scholar
  53. 53.
    de Kozak Y, Sakai J, Sainte-Laudy J, et al. Pharmacological modulation of IgE-dependent mast cell degranulation in experimental autoimmune uveoretinitis. Jpn J Ophthalmol. 1983;27:598-608.PubMedGoogle Scholar
  54. 54.
    Zorzella-Pezavento SFG, Mimura LAN, et al. Experimental autoimmune encephalomyelitis is successfully controlled by epicutaneous administration of MOG plus vitamin D analog. Front Immunol. 2017;8:1198.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kim MS, Lee DH, Lee CW, et al. Mast cell stabilizer, ketotifen, prevents UV-induced wrinkle formation. J Invest Dermatol. 2013;133:1104-1107.CrossRefPubMedGoogle Scholar
  56. 56.
    Mimura LA, Chiuso-Minicucci F, Fraga-Silva TF, et al. Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development. Neuroscience. 2016;317:130-140.CrossRefPubMedGoogle Scholar
  57. 57.
    Romualdo GR, Goto RL, Fernandes AAH, et al. Vitamin D3 supplementation attenuates the early stage of mouse hepatocarcinogenesis promoted by hexachlorobenzene fungicide. Food Chem Toxicol. 2017;107:27-36.CrossRefPubMedGoogle Scholar
  58. 58.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 22DDCT method. Methods. 2001;25:402-408.CrossRefPubMedGoogle Scholar
  59. 59.
    Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol. 2017;27:213-219.CrossRefPubMedGoogle Scholar
  60. 60.
    Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang HF, Liu XK, Li R, et al. Effect of glial cells on remyelination after spinal cord injury. Neural Regen Res. 2017;12:1724-1732.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Legroux L, Arbour N. Multiple sclerosis and T lymphocytes: An entangled story. J Neuroimmune Pharmacol. 2015;10:528-546.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 2012;26:3103-3117.CrossRefPubMedGoogle Scholar
  64. 64.
    Elieh-Ali-Komi D, Cao Y. Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol. 2017;52:436-445.CrossRefPubMedGoogle Scholar
  65. 65.
    Gonzalez-Cabrera PJ, Cahalan SM, Nguyen N, et al. S1P(1) receptor modulation with cyclical recovery from lymphopenia ameliorates mouse model of multiple sclerosis. Mol Pharmacol. 2012;81:166-174.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Christy AL, Brown MA. The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol. 2007;179:2673-2679.CrossRefPubMedGoogle Scholar
  67. 67.
    Greiner JV, Minno G. A placebo-controlled comparison of ketotifen fumarate and nedocromil sodium ophthalmic solutions for the prevention of ocular itching with the conjunctival allergen challenge model. Clin Ther. 2003;25:1988-2005.CrossRefPubMedGoogle Scholar
  68. 68.
    Akhavan A, Karimi-Sari H, Khosravi MH, Arefzadeh E, Yavarahmadi M. Comparing the effects of ketotifen fumarate eye drops and ketotifen oral pills on symptom severity and quality of life in patients with allergic rhinitis: a double-blind randomized clinical trial. Int Forum Allergy Rhinol. 2015;5:386-391.CrossRefPubMedGoogle Scholar
  69. 69.
    Hsu DZ, Chu PY, Chen SJ, Liu MY. Mast cell stabilizer ketotifen inhibits gouty inflammation in rats. Am J Ther. 2016;23:e1009-1015.CrossRefPubMedGoogle Scholar
  70. 70.
    Morrison J, Rathore APS, Mantri CK, Aman SAB, Nishida A, St John AL. Transcriptional profiling confirms the therapeutic effects of mast cell stabilization in a Dengue disease model. J Virol. 2017;91.Google Scholar
  71. 71.
    Gilmore CP, DeLuca GC, Bö L, et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. 2009;19:642-649.CrossRefPubMedGoogle Scholar
  72. 72.
    Gibson-Corley KN, Boyden AW, Leidinger MR, et al. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis. Peer J. 2016;26;4:e1600.Google Scholar
  73. 73.
    Schmierer K, Miquel ME. Magnetic resonance imaging correlates of neuro-axonal pathology in the MS spinal cord. Brain Pathol. 2018;28:765-772.CrossRefPubMedGoogle Scholar
  74. 74.
    Ortiz GG, Pacheco-Moises FP, Bitzer-Quintero OK, et al. Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. 2013;2013:708659.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Inoue M, Shinohara ML. NLRP3 inflammasome and MS/EAE. Autoimmune Dis. 2013; 859145.Google Scholar
  76. 76.
    Heid ME, Keyel PA, Kamga C, et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 2013;191:5230-5238.CrossRefPubMedGoogle Scholar
  77. 77.
    Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of reactive oxygen species in mast cell degranulation. Biochemistry (Mosc). 2016;81:1564-1577.CrossRefPubMedGoogle Scholar
  78. 78.
    Hochman DJ, Collaco CR, Brooks EG. Acrolein induction of oxidative stress and degranulation in mast cells. Environ Toxicol. 2014;29:908-915.CrossRefPubMedGoogle Scholar
  79. 79.
    Ohta Y, Yashiro K, Ohashi K, Horikoshi Y, Kusumoto C, Matsura T. Compound 48/80, a mast cell degranulator, causes oxidative damage by enhancing vitamin C synthesis via reduced glutathione depletion and lipid peroxidation through neutrophil infiltration in rat livers. J Clin Biochem Nutr. 2017;60:187-198.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Russi AE, Walker-Caulfield ME, Guo Y, Lucchinetti CF, Brown MA. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun. 2016;73:100-110.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. 2018;189:14-22.CrossRefPubMedGoogle Scholar
  82. 82.
    Macrez R, Vivien D, Docagne F. Role of endothelial NMDA receptors in a mouse model of multiple sclerosis. Med Sci (Paris). 2016;32:1068-1071.CrossRefGoogle Scholar
  83. 83.
    Kamphuis WW, Derada Troletti C, Reijerkerk A, Romero IA, de Vries HE. The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol Disord Drug Targets. 2015;14:157-167.CrossRefPubMedGoogle Scholar
  84. 84.
    Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS. 2018;15:19.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kuwahara H, Nishina K, Yokota T. Blood–brain barrier: A novel therapeutic target in multiple sclerosis. Clin Exp Neuroim 2015;6:129-138.CrossRefGoogle Scholar
  86. 86.
    Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol. 2016;15:1089-1102.CrossRefPubMedGoogle Scholar
  87. 87.
    Ribatti, D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res. 2015;338:119-125.CrossRefPubMedGoogle Scholar
  88. 88.
    Méndez-Enríquez E, Hallgren J. Mast cells and their progenitors in allergic asthma. Front Immunol. 2019;10:821.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Brown MA, Weinberg RB. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease. Front Immunol. 2018;9:514.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Presta I, Vismara M, Novellino F, et al. Innate immunity cells and the neurovascular unit. Int J Mol Sci. 2018;19.Google Scholar
  91. 91.
    Ocak U, Ocak PE, Wang A, et al. Targeting mast cell as a neuroprotective strategy. Brain Inj. 2019;33:723-733.CrossRefPubMedGoogle Scholar
  92. 92.
    Tran H, Mittal A, Sagi V, et al. Mast cells induce blood brain barrier damage in SCD by causing endoplasmic reticulum stress in the endothelium. Front Cell Neurosci. 2019;13:56.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mattila OS, Strbian D, Saksi J, et al. Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke 2011;42:3600-3605.CrossRefPubMedGoogle Scholar
  94. 94.
    Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The emerging role of neutrophil granulocytes in multiple sclerosis. J Clin Med 2018; 7.Google Scholar
  95. 95.
    Nyekel N, Pacreau E, Benadda S, et al. Mast cell degranulation exacerbates skin rejection by enhancing neutrophil recruitment. Front Immunol. 2018; 20:2690.CrossRefGoogle Scholar
  96. 96.
    Shin H, Kumamoto Y, Gopinath S, Iwasaki A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat Commun. 2016;7:13346.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sonar SA, Lal G. Differentiation and transmigration of CD4 T cells in neuroinflammation and autoimmunity. Front Immunol. 2017;8:1695.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    McGinley AM, Edwards SC, Raverdeau M, Mills KHG. Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis. J Autoimmun. 2018.Google Scholar
  99. 99.
    Castro-Borrero W, Graves D, Frohman TC, et al. Current and emerging therapies in multiple sclerosis: a systematic review. Ther Adv Neurol Disord. 2012;5:205-220.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Haghikia A, Hohlfeld R, Gold R, Fugger L. Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol Med. 2013;19:309-319.CrossRefPubMedGoogle Scholar
  101. 101.
    La Mantia L, Tramacere I, Firwana B, Pacchetti I, Palumbo R, Filippini G. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2016;4:CD009371.PubMedGoogle Scholar
  102. 102.
    Hart DA. Curbing inflammation in multiple sclerosis and endometriosis: should mast cells be targeted? Int J Inflam. 2015;2015:452095.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sokol KC, Amar NK, Starkey J, Grant JA. Ketotifen in the management of chronic urticaria: resurrection of an old drug. Ann Allergy Asthma Immunol. 2013;111:433-436.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Schwarzer G, Bassler D, Mitra A, Ducharme FM, Forster J. Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. Cochrane Database Syst Rev. 2004;1:CD001384.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  • Karen Henriette Pinke
    • 1
    Email author
  • Sofia Fernanda Gonçalves Zorzella-Pezavento
    • 1
  • Thais Fernanda de Campos Fraga-Silva
    • 1
  • Luiza Ayumi Nishiyama Mimura
    • 1
  • Larissa Ragozo Cardoso de Oliveira
    • 1
  • Larissa Lumi Watanabe Ishikawa
    • 1
  • Ana Angélica Henrique Fernandes
    • 2
  • Vanessa Soares Lara
    • 3
  • Alexandrina Sartori
    • 1
  1. 1.Department of Microbiology and ImmunologyInstitute of Biosciences, São Paulo State University (UNESP)BotucatuBrazil
  2. 2.Department of Chemistry and BiochemistryInstitute of Biosciences, São Paulo State University (UNESP)BotucatuBrazil
  3. 3.Department of Surgery, Stomatology, Pathology and RadiologyBauru School of Dentistry, University of São Paulo (USP)BauruBrazil

Personalised recommendations